Skip to main content
Log in

Notes on Certain (0,2) Correlation Functions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we shall describe some correlation function computations in perturbative heterotic strings that, for example, in certain circumstances can lend themselves to a heterotic generalization of quantum cohomology calculations. Ordinary quantum chiral rings reflect worldsheet instanton corrections to correlation functions involving products of elements of Dolbeault cohomology groups on the target space. The heterotic generalization described here involves computing worldsheet instanton corrections to correlation functions defined by products of elements of sheaf cohomology groups. One must not only compactify moduli spaces of rational curves, but also extend a sheaf (determined by the gauge bundle) over the compactification, and linear sigma models provide natural mechanisms for doing both. Euler classes of obstruction bundles generalize to this language in an interesting way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, A., Basu, A., Sethi, S.: (0,2) duality. Adv. Theor. Math. Phyp. 7, 865–950 (2004)

    Google Scholar 

  2. Distler, J., Greene, B., Morrison, D.: Resolving singularities in (0,2) models. Nucl. Phys. B481, 289–312 (1996)

    Google Scholar 

  3. Beasley, C., Witten, E.: Residues and worldsheet instantons. JHEP 0310, 065 (2003)

    Article  ADS  Google Scholar 

  4. Dine, M., Seiberg, N., Wen, X.-G., Witten, E.: Nonperturbative effects on the string worldsheet. Nucl. Phys. B278, 769–789 (1986)

    Google Scholar 

  5. Witten, E., Bagger, J.: Quantization of Newton's constant in certain supergravity theories. Phys. Lett. B115, 202–206 (1982)

    Google Scholar 

  6. Distler, J.: Notes on sigma models. In Trieste 1992, Proceedings, String theory and quantum gravity '92, Singapore: world scientific, 1992, pp. 234–256

  7. Schwarz, A.: Sigma models having supermanifolds as target spaces. Lett. Math. Phys. 38, 91–96 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Silverstein, E., Witten, E.: Criteria for conformal invariance of (0,2) models. Nucl. Phys. B444, 161–190 (1995)

    Google Scholar 

  9. Berglund, P., Candelas, P., de la Ossa, X., Derrick, E., Distler, J., Hubsch, T.: On the instanton contributions to the masses and couplings of E 6 singlets. Nucl. Phys. B454, 127–163 (1995)

    Google Scholar 

  10. Basu, A., Sethi, S.: Worldsheet stability of (0,2) linear sigma models. Phys. Rev. D68, 025003 (2003)

    Google Scholar 

  11. Antoniadis, I., Gava, E., Narain, K., Taylor, T.: Topological amplitudes in string theory. Nucl. Phys. B413, 162–184 (1994)

    Google Scholar 

  12. Distler, J., Greene, B.: Aspects of (2,0) string compactifications. Nucl. Phys. B304, 1–62 (1988)

  13. Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces. Boston: Birkhäuser, 1980

  14. Aspinwall, P., Morrison, D.: Topological field theory and rational curves. Common. Math. Phys. 151, 245–262 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Witten, E.: Topological sigma models. Common. Math. Phys. 118, 411–449 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Witten, E.: On the structure of the topological phase of two-dimensional gravity. Nucl. Phys. B340, 281–332 (1990)

    Google Scholar 

  17. Kontsevich, M.: Enumeration of rational curves via torus actions. In The Moduli Space of Curves (Texel Island, 1994), Dijkgraaf, R., Faber C., van der Geer, G. eds., Progress in Math. 129, Boston-Basel-Berlin: Birkhäuser, 1995, pp. 335–368

  18. Klyachko, A. A.: Equivariant bundles on toral varieties. Math. USSR Izvestiya 35, 337–375 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Knutson, A., Sharpe, E.: Sheaves on toric varieties for physics. Adv. Theor. Math. Phys. 2, 865–948 (1998)

    MathSciNet  Google Scholar 

  20. Morrison, D., Plesser, R.: Summing the instantons: quantum cohomology and mirror symmetry in toric varieties. Nucl. Phys. B440, 279–354 (1995)

    Google Scholar 

  21. Atiyah, M.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181–207 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  22. Witten, E.: Phases of theories in two dimensions. Nucl. Phys. B403, 159–222 (1993)

  23. Distler, J., Kachru, S.: (0,2) Landau-Ginzburg theory. Nucl. Phys. B413, 213–243 (1994)

    Google Scholar 

  24. Beauville, A.: Complex Algebraic Surfaces. Second edition, Cambridge: Cambridge University Press, 1996

  25. Sharpe, E.: Kähler cone substructure. Adv. Theor. Math. Phys. 2 1441–1462 (1999)

    Google Scholar 

  26. Katz, S., Sharpe, E.: Notes on certain (0,2) correlation functions, http://arxiv.org/list/hep-th/0406226, 2004, the preprint version of this paper

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Katz.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, S., Sharpe, E. Notes on Certain (0,2) Correlation Functions. Commun. Math. Phys. 262, 611–644 (2006). https://doi.org/10.1007/s00220-005-1443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1443-1

Keywords

Navigation