Skip to main content

Advertisement

Log in

Global Regularity of Wave Maps from R2+1 to H2. Small Energy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We demonstrate that Wave Maps with smooth initial data and small energy from R2+1 to the Lobatchevsky plane stay smooth globally in time. Our method is similar to the one employed in [18]. However, the multilinear estimates required are considerably more involved and present novel technical challenges. In particular, we shall have to work with a modification of the functional analytic framework used in [30], [33], [18].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Ancona, P., Georgiev, V.: On the continuity of the solution operator of the wave maps system. Preprint

  2. Bizon, P.: Commun.Math.Phys. 215, 45 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Christodoulou, D., Tahvildar-Zadeh A.: On the regularity of spherically symmetric wave maps. C.P.A.M. 46, 1041–1091 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Guenther, M.: Isometric embeddings of Riemannian manifolds. In: Proceedings Interntl. Congress of Mathematicians, Vol. 1-2 (Kyoto 1990), Tokyo: Math. Soc. Japan, 1991, pp. 1137–1143

  5. Gu, C.-H.: On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space. Comm. Pure Appl. Math. 33, 727–737 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Helein, F.: Regularite des applications faiblement harmoniques entre une surface et une varietee Riemanienne. C.R.Acad.Sci.Paris Ser. 1 Math 312, 591–596 (1991)

    MathSciNet  Google Scholar 

  7. Klainerman, S.: UCLA lectures on nonlin. wave eqns. Preprint (2001)

  8. Klainerman, S., Foschi, D.: Bilinear Space-Time Estimates for Homogeneous Wave Equations. Ann. Scient. Ec. Norm. Sup. 4e serie, t.33, 211–274 (2000)

  9. Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Duke Math.J. 81, 99–133 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Klainerman, S., Machedon, M.: On the algebraic properties of the spaces. I.M.R.N. 15, 765–774 (1998)

    Google Scholar 

  11. Klainerman, S., Machedon, M.: On the regularity properties of a model problem related to wave maps. Duke Math.J. 87, 553–589 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Klainerman, S., Rodnianski, I.: On the global regularity of wave maps in the critical Sobolev norm. I.M.R.N. 13, 655–677 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klainerman, S., Selberg, S.: Remark on the optimal regularity for equations of wave maps type. C.P.D.E. 22, 901–918 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Klainerman, S., Selberg, S.: The spaces Hs and applications to nonlinear wave equations. Preprint

  15. Klainerman, S., Selberg, S.: Bilinear estimates and applications to nonlinear wave equations. Preprint

  16. Klainerman, S., Tataru, D.: On the optimal regularity for the Yang-Mills equations in R4+1. J. Am. Math. Soc. 12, 93–116 (1999)

    Article  MathSciNet  Google Scholar 

  17. Krieger, J.: Global Regularity of Wave Maps in 2 and 3 spatial dimensions. Ph. D. Thesis, Princeton University (2003)

  18. Krieger, J.: Global regularity of Wave Maps from R3+1 to surfaces. Commun. Math. Phys. 238(/1-2), 333–366 (2003)

    Google Scholar 

  19. Krieger, J.: Null-Form estimates and nonlinear waves. To appear in Advances in Diff. Eqn.

  20. Nahmod, A., Stefanov, A., Uhlenbeck, K.: On the well-posedness of the wave maps problem in high dimensions. Preprint(2001)

  21. Selberg, S.: Multilinear space-time estimates and applications to local existence theory for nonlinear wave equations. Ph.D. thesis, Princeton University, 1999

  22. Shatah, J., Tahvildar-Zadeh, A.: On the Cauchy Problem for Equivariant Wave Maps. Comm. Pure Appl. Math. 47, 719–754 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993

  24. Struwe, M., Shatah, J.: The Cauchy problem for wave maps. I.M.R.N. 11, 555–571 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Struwe, M., Shatah, J.: Geometric Wave Equations. AMS Courant Lecture Notes 2

  26. Struwe, M.: Equivariant Wave Maps in 2 space dimensions. Preprint

  27. Struwe, M.: Radially Symmetric Wave Maps from 1+2 dimensional Minkowski space to the sphere. Math.Z. 242 (2002)

  28. Tao, T.: Ill-posedness for one-dimensional Wave Maps at the critical regularity. Am. J. Math. 122(3), 451–463 (2000)

    MATH  Google Scholar 

  29. Tao, T.: Global regularity of wave maps I. I.M.R.N. 6, 299–328 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Tao, T.: Global regularity of wave maps II. Comm.Math.Phys. 224, 443–544 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Tao, T.: Counterexamples to the n=3 endpoint Strichartz estimate for the wave equation. Preprint

  32. Tataru, D.: Local and global results for wave maps I. Comm. PDE 23, 1781–1793 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Tataru, D.: On global existence and scattering for the wave maps equation. Am. J. Math. 123(1), 37–77 (2001)

    MATH  Google Scholar 

  34. Tataru, D.: Rough solutions for the Wave Maps equation. Preprint

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Constantin

Acknowledgement. The author would like to thank his Ph. D. advisor Sergiu Klainerman for important advice and encouragement, as well as Kenji Nakanishi, Igor Rodnianski, Terence Tao and Daniel Tataru for helpful discussions. He is also indebted to the referee for pointing out errors and suggesting improvements for the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, J. Global Regularity of Wave Maps from R2+1 to H2. Small Energy. Commun. Math. Phys. 250, 507–580 (2004). https://doi.org/10.1007/s00220-004-1088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1088-5

Keywords

Navigation