Skip to main content
Log in

A Semiclassical Egorov Theorem and Quantum Ergodicity for Matrix Valued Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the semiclassical time evolution of observables given by matrix valued pseudodifferential operators and construct a decomposition of the Hilbert space L 2( d)⊗ n into a finite number of almost invariant subspaces. For a certain class of observables, that is preserved by the time evolution, we prove an Egorov theorem. We then associate with each almost invariant subspace of L 2( d)⊗ n a classical system on a product phase space T* d×, where is a compact symplectic manifold on which the classical counterpart of the matrix degrees of freedom is represented. For the projections of eigenvectors of the quantum Hamiltonian to the almost invariant subspaces we finally prove quantum ergodicity to hold, if the associated classical systems are ergodic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolte, J., Glaser, R.: Zitterbewegung and semiclassical observables for the Dirac equation. Preprint, 2004, available at arXiv:quant-ph/0402154

  2. Bolte, J., Glaser, R.: Quantum ergodicity for Pauli Hamiltonians with spin 1/2. Nonlinearity 13, 1987–2003 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolte, J., Glaser, R., Keppeler, S.: Quantum and classical ergodicity of spinning particles. Ann. Phys. (NY) 293,1–14 (2001)

    Article  MATH  Google Scholar 

  4. Bolte, J., Keppeler, S.: A semiclassical approach to the Dirac equation. Ann. Phys. (NY) 274, 125–162 (1999)

    Article  MATH  Google Scholar 

  5. Bolte, J., Keppeler, S.: Semiclassical form factor for chaotic systems with spin 1/2. J. Phys. A: Math. Gen. 32, 8863–8880 (1999)

    Google Scholar 

  6. Brummelhuis, R., Nourrigat, J.: Scattering amplitude for Dirac operators. Commun. Part. Diff. Eq. 24, 377–394 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Bruneau, V., Robert, D.: Asymptotics of the scattering phase for the Dirac operator: High energy, semi-classical and non-relativistic limits. Ark. Mat. 37, 1–32 (1999)

    MathSciNet  Google Scholar 

  8. Bouzouina, A., Robert, D.: Uniform semiclassical estimates for the propagation of quantum observables. Duke Math. J. 111, 223–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colin~de Verdière, Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102, 497–502 (1985)

    MATH  Google Scholar 

  10. Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic Theory, Grundlehren der mathematischen Wissenschaften, Vol. 245, Berlin, Heidelberg, New York: Springer-Verlag, 1982

  11. Cordes, H.O.: A version of Egorov’s theorem for systems of hyperbolic pseudo-differential equations. J. Funct. Anal. 48, 285–300 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Cordes, H.O.: A pseudo-algebra of observables for the Dirac equation. Manuscripta Math. 45, 77–105 (1983)

    MathSciNet  MATH  Google Scholar 

  13. Cordes, H.O.: A pseudodifferential-Foldy-Wouthuysen transform. Commun. Part. Diff. Eqs. 8, 1475–1485 (1983)

    MATH  Google Scholar 

  14. Cordes, H.O.: The Technique of Pseudodifferential Operators. London Mathematical Society Lecture Note Series, No. 202, Cambridge: Cambridge University Press, 1995

  15. Cordes, H.O.: On Dirac observables. Progr. Nonlinear Diff. Eqs. Appl. 42, 61–77 (2000)

    MATH  Google Scholar 

  16. Cordes, H.O.: Dirac algebra and Foldy-Wouthuysen transform. In: Evolution Equations and their Applications in Physical and Life Sciences, Lecture Notes in Pure and Applied Mathematics, Vol. 215, New York: Dekker, 2001, pp. 335–346

  17. Calderón, P., Vaillancourt, R.: On the boundedness of pseudo-differential operators. J. Math. Soc. Japan 23, 374–378 (1971)

    Google Scholar 

  18. Dimassi, M.: Développements asymptotiques des perturbations lentes de l’opérateur de Schrödinger périodique. Commun. Part. Diff. Eq. 18, 771–803 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Dimassi, M.: Trace asymptotics formulas and some applications. Asymptot. Anal. 18, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Notes, Vol. 268, Cambridge: Cambridge University Press, 1999

  21. Egorov, Y.V.: The canonical transformations of pseudodifferential operators. Usp. Mat. Nauk 25, 235–236 (1969)

    Google Scholar 

  22. Emmrich, C., Weinstein, A.: Geometry of the transport equation in multicomponent WKB approximations. Commun. Math. Phys. 176, 701–711 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Figueroa, H., Gracia-Bondía, J.M., Várilly, J.C.: Moyal quantization with compact symmetry groups and noncommutative harmonic analysis. J. Math. Phys. 31, 2664–2671 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys. 109, 313–326 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l’équation de Harper (avec application à l’équation de Schrödinger avec champ magnétique). Mém. Soc. Math. France (N.S.) 116(34), (1988)

  26. Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. Springer Monographs in Mathematics, Berlin, Heidelberg, New York: Springer-Verlag, 1998

  27. Kirillov, A.A.: Elements of the Theory of Representations. Grundlehren der mathematischen Wissenschaften, Vol. 220, Berlin, Heidelberg, New York: Springer-Verlag, 1976

  28. Lazutkin, V.F.: KAM Theory and Semiclassical Approximation to Eigenfunctions. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 24, Berlin, Heidelberg, New York: Springer- Verlag, 1993

  29. Littlejohn, R.G., Flynn, W.G.: Geometric phases in the asymptotic theory of coupled wave equations. Phys. Rev. A 44, 5239–5256 (1991)

    Article  MathSciNet  Google Scholar 

  30. Nenciu, G.: On asymptotic perturbation theory for quantum mechanics: Almost invariant subspaces and gauge invariant magnetic perturbation theory. J. Math. Phys. 1, 1273–1298 (2002)

    Article  MathSciNet  Google Scholar 

  31. Nenciu, G., Sordoni, V.: Semiclassical limit for multistate Klein-Gordon systems: almost invariant subspaces and scattering theory. Preprint, 2001

  32. Panati, G., Spohn, H., Teufel, S.: Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7, (2003)

  33. Robert, D.: Autour de l’Approximation Semi-Classique. Progress in Mathematics, Vol. 68, Boston, Basel, Stuttgart: Birkhäuser, 1987

  34. Schubert, R.: Semiclassical localization in phase space. Ph.D. thesis, Universität Ulm, 2001

  35. Simon, B.: The classical limit of quantum partition functions. Commun. Math. Phys. 71, 247–276 (1980)

    MathSciNet  MATH  Google Scholar 

  36. Spohn, H.: Semiclassical limit of the Dirac equation and spin precession. Ann. Phys. (NY) 282, 420–431 (2000)

    Article  MATH  Google Scholar 

  37. Stratonovich, R.L.: On distributions in representation space. Soviet Physics JETP 4, 891–898 (1957)

    MathSciNet  MATH  Google Scholar 

  38. Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)

    MathSciNet  MATH  Google Scholar 

  39. Zelditch, S.: Quantum ergodicity of C * dynamical systems. Commun. Math. Phys. 177, 502–528 (1996)

    Google Scholar 

  40. Zelditch, S., Zworski, M.: Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys. 175, 673–682 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Glaser.

Additional information

P. Sarnak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolte, J., Glaser, R. A Semiclassical Egorov Theorem and Quantum Ergodicity for Matrix Valued Operators. Commun. Math. Phys. 247, 391–419 (2004). https://doi.org/10.1007/s00220-004-1064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1064-0

Keywords

Navigation