Skip to main content
Log in

Noncommutative Rigidity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using very weak criteria for what may constitute a noncommutative geometry, I show that a pseudo-Riemannian manifold can only be smoothly deformed into noncommutative geometries if certain geometric obstructions vanish. These obstructions can be expressed as a system of partial differential equations relating the metric and the Poisson structure that describes the noncommutativity. I illustrate this by computing the obstructions for well known examples of noncommutative geometries and quantum groups. These rigid conditions may cast doubt on the idea of noncommutatively deformed space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bieliavsky, P., Bordemann, M., Gutt, S., Waldmann, S.: Traces for star products on the dual of a Lie algebra. math.QA/0202126

  2. Boucetta, M.: Compatabilité des structures pseudo-riemanniennes et des structures de Poisson. C. R. Acad. Sci. Paris 333, Série I, 763–768 (2001)

  3. Bursztyn, H.: Poisson Vector Bundles, Contravariant Connections and Deformations. Prog. Theor. Phys. Supp. 144 (2001)

  4. Chakraborty, P.S., Pal, A.: Equivariant Spectral triple on the Quantum SU(2)-group. K-Theory 28, 107–126 (2003) math.KT/0201004

    Article  MATH  Google Scholar 

  5. Connes, A.: Noncommutative Geometry. London-New York: Academic Press, 1994

  6. Connes, A.: Gravity Coupled with Matter and the Foundation of Non-commutative Geometry. Commun. Math. Phys. 182, 155–176 (1996) hep-th/9603053

    MathSciNet  MATH  Google Scholar 

  7. Connes, A., Douglas, M., Schwarz, A.: Noncommutative Geometry and Matrix Theory: Compactification on Tori. JHEP 9802, 003 (1998) hep-th/9711162

    Google Scholar 

  8. Connes, A., Dubois-Violette, M.: Noncommutative Finite-Dimensional Manifolds. I. Spherical manifolds and related examples. math.QA/0107070

  9. Connes, A., Dubois-Violette, M.: Moduli Space and Structure of Noncommutative 3-Spheres. math.QA/0308275

  10. Connes, A., Landi, G.: Noncommutative Manifolds, the Instanton Algebra and Isospectral Deformations. Commun. Math. Phys. 221, 141–159 (2001) math.QA/0011194

    MATH  Google Scholar 

  11. Cornalba, L., Schiappa, R.: Nonassociative Star Product Deformations for D-brane Worldvolumes in Curved Backgrounds. Commun. Math. Phys. 225, 33–66 (2002) hep-th/0101219

    Article  MathSciNet  MATH  Google Scholar 

  12. Dąbrowski, L., Sitarz, A.: Dirac Operator on the Standard Podleś Quantum Sphere. To appear in Banach Center Publications. math.QA/0209048

  13. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative Differential Geometry of Matrix Algebras. J. Math. Phys. 31(2), 316–322 (1990)

    Article  MATH  Google Scholar 

  15. Dubois-Violette, M., Kerner, R., Madore, J.: Shadow of noncommutativity. J. Math. Phys. 39, 730–738 (1998) q-alg/9702030

    Article  MathSciNet  MATH  Google Scholar 

  16. Fedosov, B.: Deformation Quantization and Index Theory. Mathematical Topics. Vol. 9, Berlin: Akademie Verlag, 1995

  17. Felder, G., Shoikhet, B.: Deformation Quantization with Traces. Lett. Math. Phys. 53, 73–86 (2000) math.QA/0002057

    Article  Google Scholar 

  18. Fernandes, R.L.: Connections in Poisson Geometry. I. Holonomy and Invariants. J. Diff. Geom. 54(2), 303–365 (2000) math.DG/0001129

    MATH  Google Scholar 

  19. Fuchs, J.: Affine Lie Algebras and Quantum Groups. Cambridge: Cambridge University Press, 1995

  20. Konechny, A., Schwarz, A.: Introduction to M(atrix) Theory and Noncommutative Geometry. Phys. Rept. 360, 353–465 (2002) hep-th/0012145

    MATH  Google Scholar 

  21. Kontsevich, M.: Deformation Quantization of Poisson Manifolds, I. q-alg/9709040

  22. Lu, J.-H., Weinstein, A.: Poisson-Lie Groups, Dressing Transformations and Bruhat Decompositions J. Differ. Geom. 31, 501–526 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Madore, J.: The Fuzzy Sphere. Classical Quantum Gravity 9(1), 69–87 (1992)

    Article  MATH  Google Scholar 

  24. Reshetikhin, N., Voronov, A., Weinstein, A.: Semiquantum Geometry. Algebraic geometry, 5. J. Math. Sci. 82(1), 3255–3267 (1996) q-alg/9606007

  25. Seiberg, N., Witten, E.: String Theory and Noncommutative Geometry. JHEP 9909 032 (1999) hep-th/9908142

  26. Strohmaier, A.: On Noncommutative and Semi-Riemannian Geometry. math-ph/0110001

  27. Vaisman, I.: On the Geometric Quantization of Poisson Manifolds. J. Math. Phys. 32, 3339–3345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Basel-Boston: Birkhauser, 1994

  29. Weinstein, A.: Some Remarks on Dressing Transformations. J. Fac. Sci. Univ. Tokyo. Sect. 1A Math. 36, 163–167 (1988)

    Google Scholar 

  30. Weinstein, A.: The modular automorphism group of a Poisson manifold. J. Geom. Phys. 23, 379–394 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Hawkins.

Additional information

A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, E. Noncommutative Rigidity. Commun. Math. Phys. 246, 211–235 (2004). https://doi.org/10.1007/s00220-004-1036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1036-4

Keywords

Navigation