Skip to main content
Log in

Probing the origin of the EMC effect via tagged structure functions of the deuteron

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

We demonstrate that measurement of tagged structure functions of the deuteron in (e, e′N) semi-inclusive reactions can discriminate between different hypotheses on the origin of the nuclear EMC effect. By choosing extreme backward kinematics for the spectator nucleon to minimize effects from the deuteron wave function and final state interactions, one can isolate the modifications in the structure of the bound nucleon within the impulse approximation. The same reaction can be used to extract the large-x neutron to proton structure function ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Aubert et al. (EM Collaboration), Phys. Lett. B 123, 275 (1983)

    Article  ADS  Google Scholar 

  2. A. C. Benvenuti et al. (BCDMS Collaboration), Phys. Lett. B 189, 483 (1987)

    Article  ADS  Google Scholar 

  3. J. Ashman et al. (EM Collaboration), Phys. Lett. B 202, 603 (1988); Z. Phys. C 57, 211 (1993)

    Article  ADS  Google Scholar 

  4. S. Dasu et al., Phys. Rev. D 49, 5641 (1994)

    Article  ADS  Google Scholar 

  5. J. Gomez et al., Phys. Rev. D 49, 4348 (1994)

    Article  ADS  Google Scholar 

  6. S. E. Kuhn and K. A. Griffioen (Spokespersons), CEBAF proposal PR-94-102

  7. Proceedings of Workshop “Future Physics at HERA”, Sep. 95–May 96, DESY, Hamburg (1996); G. van der Steenhoven, private communication

  8. L. L Frankfurt and M. I. Strikman, Phys. Rep. 76, 217 (1981)

    Article  ADS  Google Scholar 

  9. W. Melnitchouk, A. W. Schreiber, and A. W. Thomas, Phys. Rev. D 49, 1183 (1994)

    Article  ADS  Google Scholar 

  10. S. A. Kulagin, G. Piller, and W. Weise, Phys. Rev. C 50, 1154 (1994)

    Article  ADS  Google Scholar 

  11. W. Melnitchouk, A. W. Schreiber, and A. W. Thomas, Phys. Lett. B 335, 11 (1994)

    Article  ADS  Google Scholar 

  12. S. A. Kulagin, W. Melnitchouk, G. Piller, and W. Weise, Phys. Rev. C 52, 932 (1995)

    Article  ADS  Google Scholar 

  13. W. W. Buck and F. Gross, Phys. Rev.D 20, 2361 (1979); J. W. Van Orden, N. Devine, and F. Gross, Phys. Rev. Lett. 75, 4369 (1995); E. Hummel and J. A. Tjon Phys. Rev. C 49, 21 (1994)

    Article  ADS  Google Scholar 

  14. W. Melnitchouk, G. Piller, and A. W. Thomas, Phys. Lett. B 346, 165 (1995); G. Piller, W. Melnitchouk, and A. W. Thomas, Phys. Rev. C 54, 894 (1996)

    Article  ADS  Google Scholar 

  15. L. L. Frankfurt and M. I. Strikman, Phys. Lett. 64 B, 435 (1976)

    ADS  Google Scholar 

  16. P. V. Landshoff and J. C. Polkinghorne, Phys. Rev. D 18, 158 (1978)

    ADS  Google Scholar 

  17. L. L. Frankfurt and M. I. Strikman, Phys. Rep. 160, 235 (1988)

    Article  ADS  Google Scholar 

  18. G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  19. M. Lacombe et al., Phys. Rev. C 21, 861 (1990)

    Article  ADS  Google Scholar 

  20. R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987)

    Article  ADS  Google Scholar 

  21. M. I. Strikman, M. Tverskoy, and M. Zhalov, in Proceedings of Workshop “Future Physics at HERA”, Hamburg, pp.1085-1088 (1996), nuclth/9609055

  22. E665 Collaboration, M. R. Adams et al., Phys. Rev. Lett. 74, 5198 (1995)

    Article  ADS  Google Scholar 

  23. L. L. Frankfurt, G. A. Miller, W. R. Greenberg, M. M. Sargsyan, and M. I. Strikman, Z. Phys. A 352, 97 (1995)

    Article  ADS  Google Scholar 

  24. L. L. Frankfurt, G. A. Miller, W. R. Greenberg, M. M. Sargsyan, and M. I. Strikman, Phys. Lett. B 369, 201 (1996)

    Article  ADS  Google Scholar 

  25. L. L. Frankfurt and M. I. Strikman, Nucl. Phys. B250, 1585 (1985)

    Google Scholar 

  26. C. E. Carlson and K.E. Lassilla and P.U. Sukhatme, Phys. Lett. B 263, 277 (1992)

    Article  ADS  Google Scholar 

  27. C. Ciofi degli Atti and S. Simula, Few Body Systems 18, 55 (1995)

    Article  ADS  Google Scholar 

  28. S. V. Akulinichev, S. A. Kulagin and G. M. Vagradov, Phys. Lett. 158 B, 485 (1985); S. A. Kulagin, Nucl. Phys. A500, 653 (1989)

    Article  ADS  Google Scholar 

  29. G. V. Dunne and A. W. Thomas, Nucl. Phys. A446, 437c (1985)

    Article  ADS  Google Scholar 

  30. M. Ericson and A. W. Thomas, Phys. Lett. B 128, 112 (1983)

    Article  ADS  Google Scholar 

  31. B. L. Friman, V. R. Pandharipande, and R. B. Wiringa, Phys. Rev. Lett. 51, 763 (1983); E. L. Berger, F. Coester, and R. B. Wiringa, Phys. Rev. D 29, 398 (1984)

    Article  ADS  Google Scholar 

  32. H. Jung and G. A. Miller, Phys. Lett. B 200, 351 (1988)

    Article  ADS  Google Scholar 

  33. C. Ciofi degli Atti and S. Liuti, Phys. Lett. B 225, 215 (1989)

    Article  ADS  Google Scholar 

  34. L. P. Kaptari et al., Nucl. Phys. A512, 684 (1990); W. Melnitchouk and A. W. Thomas, Phys. Rev. D 47, 3783 (1993)

    Article  ADS  Google Scholar 

  35. R. P. Bickerstaff and A. W. Thomas, J. Phys. G 15, 1523 (1989)

    Article  ADS  Google Scholar 

  36. S. Huang and J. Tjon, Phys. Rev. C 49, 1702 (1994); N. Ishii, W. Bentz, and K. Yazaki, Phys. Lett. B 301, 165 (1993); H. Meyer, Phys. Lett. B 337, 37 (1994); C. M. Shakin and W.-D. Sun, Phys. Rev. C 50, 2553 (1994)

    Article  ADS  Google Scholar 

  37. M. R. Frank, B. K. Jennings and G. A. Miller, Phys. Rev. C 54, 920 (1996)

    Article  ADS  Google Scholar 

  38. L. L. Frankfurt M. M. Sargsian and M. I. Strikman, Z. Phys. A 335, 431 (1990)

    ADS  Google Scholar 

  39. F. E. Close, R. G. Roberts and G. G. Ross, Phys. Lett. B 129, 346 (1983)

    Article  ADS  Google Scholar 

  40. O. Nachtmann and H. J. Pirner, Z. Phys. C 21, 277 (1984)

    Article  ADS  Google Scholar 

  41. R. L. Jaffe, F. E. Close, R. G. Roberts and G. G. Ross, Phys. Lett. B 134, 449 (1984)

    Article  ADS  Google Scholar 

  42. F. E. Close et al., Phys. Rev. D 31, 1004 (1985)

    Article  ADS  Google Scholar 

  43. G. Güttner and H. J. Pirner, Nucl. Phys. A457, 555 (1986)

    Article  ADS  Google Scholar 

  44. B. Z. Kopeliovich, in Proceedings of Workshop “Future Physics at HERA”, Hamburg, pp.1038-1042 (1996), nucl-th/9607036

  45. W. Melnitchouk and A. W. Thomas, Phys. Lett. B 377, 11 (1996)

    Article  ADS  Google Scholar 

  46. A. Bodek, S. Dasu and S. E. Rock, in Tucson Part. Nucl. Phys. 768–770 (1991); L. W. Whitlow et al., Phys. Lett. B 282, 475 (1992)

  47. M. I. Strikman, Nuclear Parton Distributions and Extraction of Neutron Structure Functions, in Proc. of XXVI International Conference on High Energy Physics, World Scientific, Singapore, V.1, 806–809 (1992) Dallas, TX

  48. G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 35, 1416 (1975)

    Article  ADS  Google Scholar 

  49. W. Melnitchouk and J.C. Peng, Phys. Lett.B400, 220 (1997); E.L.Berger, F.Halzen, C.S.Kim and S.Willenbrock, Phys. Rev. D 40, 83 (1989)

    Article  ADS  Google Scholar 

  50. S. Simula, Rome preprint INFN-ISS-96-2, nucl-th/9605024

  51. G. van der Steenhoven, private communication

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnitchouk, W., Sargsian, M. & Strikman, M.I. Probing the origin of the EMC effect via tagged structure functions of the deuteron. Z Phys A - Particles and Fields 359, 99–109 (1997). https://doi.org/10.1007/s002180050372

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002180050372

PACS

Navigation