Skip to main content

Advertisement

Log in

Amelioration of growth, nutritional value, and microbial load of Tenebrio molitor (Coleoptera: Tenebrionidae) through probiotic supplemented feed

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Industrial production of Tenebrio molitor larvae (TML), a promising source of protein for food, requires safety, fast growth, maturation, and high survival. Probiotics, enhance host growth and protect against pathogens and diseases. This study evaluates the effects of three probiotic bacteria immobilized on the diet of mealworms, on growth performance, nutritional value, and microbial load of T. molitor larvae. The bacteria employed were Bacillus subtilis, Bacillus toyonensis and Enterococcus faecalis, all presenting probiotic properties. The highest larvae weight and length gain and shorter time to pupation were observed in the E. faecalis series. Following probiotic administration, the crude protein content increased, and crude fat was reduced. The highest protein values were observed in E. faecalis series, the highest dry matter content when B. toyonensis and B. subtilis were employed, and the lowest fat content in B. subtilis series. Fatty acid analysis showed significantly decreased content of palmitic and myristic acid and increased levels of stearic acid in all treatments. Microbial load analysis showed a decrease in Enterobacteriaceae by 46 and 99% in B. subtilis and B. toyonensis series, while coliforms and endospores were significantly reduced in all probiotic series. Addition of probiotic bacteria in T. molitor larvae diet resulted in a significant improvement in terms of growth enhancement, nutritional fortification, and microbial load reduction. In conclusion, probiotic bacteria in TML diet result in the faster production of nutritious and safe insects, to cover insect food market demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tang C, Yang D, Liao H, Sun H, Liu C, Wei L, Li F (2019) Edible insects as a food source: a review. Food Prod Process Nutr 1:1–13

    Article  Google Scholar 

  2. Cappelli A, Cini E, Lorini C, Oliva N, Bonaccorsi G (2020) Insects as food: a review on risks assessments of Tenebrionidae and Gryllidae in relation to a first machines and plants development. Food Control 108:106877

    Article  CAS  Google Scholar 

  3. Botton V, Chiarello LM, Klunk GA, Marin D, Curbani L, Gonçalves MJ, Vitorino MD (2021) Evaluation of nutritional composition and ecotoxicity of the stick insect Cladomorphus phyllinum. Eur Food Res Technol 247:605–611

    Article  CAS  Google Scholar 

  4. Kouřimská L, Adámková A (2016) Nutritional and sensory quality of edible insects. NFS J 4:22–26

    Article  Google Scholar 

  5. dos Santos OV, Dias PCS, Soares SD et al (2021) Artisanal oil obtained from insects’ larvae (Speciomerus ruficornis): fatty acids composition, physicochemical, nutritional and antioxidant properties for application in food. Eur Food Res Technol 247:1803–1813. https://doi.org/10.1007/s00217-021-03752-8

    Article  CAS  Google Scholar 

  6. Grau T, Vilcinskas A, Joop G (2017) Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift fűr Naturforschung. https://doi.org/10.1515/znc-2017-0033

    Article  PubMed  Google Scholar 

  7. Ravzanaadii N, Kim SH, Choi WH, Hong SJ, Kim NJ (2012) Nutritional value of mealworm, Tenebrio molitor as food source. Int J Ind Entomol 25(1):93–98. https://doi.org/10.7852/ijie.2012.25.1.093

    Article  Google Scholar 

  8. Commission Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0893&from=EN

  9. EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Knutsen HK (2021) Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. https://doi.org/10.2903/j.efsa.2021.6343

    Article  Google Scholar 

  10. Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animals

  11. Siemianowska E, Kosewska A, Aljewicz M, Skibniewska KA, Polak-Juszczak L, Jarocki A, Jedras M (2013) Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric Sci 4(6):287–291. https://doi.org/10.4236/as.2013.46041

    Article  Google Scholar 

  12. Zhao X, Vázquez-Gutiérrez JL, Johansson DP, Landberg R, Langton M (2016) Yellow mealworm protein for food purposes—extraction and functional properties. PLoS ONE 11(2):1–17. https://doi.org/10.1371/journal.pone.0147791

    Article  CAS  Google Scholar 

  13. van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Vantomme P (2013) Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome, FAO Forestry Paper No. 171

  14. Rumbos CI, Karapanagiotidis IT, Mente E, Psofakis P, Athanasiou CG (2020) Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci Rep 10:11224. https://doi.org/10.1038/s41598-020-67363-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Govorushko S (2019) Global status of insects as food and feed source: a review. Trends Food Sci Technol 91:436–445. https://doi.org/10.1016/j.tifs.2019.07.032

    Article  CAS  Google Scholar 

  16. Mancini S, Fratini F, Tuccinardi T, Degl’Innocenti C, Paci G (2020) Tenebrio molitor reared on different substrates: is it gluten free? Food Control 110:107014. https://doi.org/10.1016/j.foodcont.2019.107014

    Article  Google Scholar 

  17. Heckmann LH, Andersen JL, Gianotten N, Calis M, Fischer CH, Calis H (2018). In: Halloran A et al (eds) Edible insects in sustainable food systems. Springer, Switzerland

    Google Scholar 

  18. Ribeiro N, Abelho M, Costa R (2018) A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J ENT Sci 53(4):434–454. https://doi.org/10.1847/JES17-67.1

    Article  Google Scholar 

  19. Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Pasquini M, Riolo P, Ruschioni S, Isidoro N, Loreto N, Franciosi E, Tuohy K, Petruzzelli A, Foglini M, Gabucci C, Tonucci F, Aquilanti L (2018) The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): from feed to frass. Int J Food Microbiol 272:49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001

    Article  PubMed  Google Scholar 

  20. FAO (2001) Health and nutrition properties of probiotics in food including powder milk with live lactic acid bacteria: report of a joint FAO/WHO expert consultation, Cordoba, Argentina, 1–4 October 2001

  21. Hossain MdI, Sadekuzzaman M, Ha SD (2017) Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review. Food Res Int 100:63–73. https://doi.org/10.1016/j.foodres.2017.07.077

    Article  CAS  PubMed  Google Scholar 

  22. Zhong J, Zhang F, Peng Y, Ji Z, Li H, Zhang X, Shi Q, Zhang J (2017) Mixed culture of probiotics on a solid-state medium: an efficient method to produce an affordable probiotic feed additive. Biotechnol Bioprocess Eng 22:758–766. https://doi.org/10.1007/s12257-017-0038-y

    Article  CAS  Google Scholar 

  23. Lecocq A, Natsopoulou ME, Berggreen IE, Eilenberg J, Lau Heckmann LH, Nielsen HV, Stensvold CR, Jensen AB (2021) Probiotic properties of an indigenous Pediococcus pentosaceus strain on Tenebrio molitor larval growth and survival. J Ins Food Feed. https://doi.org/10.3920/JIFF2020.0156

    Article  Google Scholar 

  24. McFarland LV (2020) Efficacy of single-strain probiotics versus multi-strain mixtures: systematic review of strain and disease specificity. Dig Dis Sci 66(3):694–704. https://doi.org/10.1007/s10620-020-06244-z

    Article  CAS  PubMed  Google Scholar 

  25. Deruytter D, Coudron CL, Claeys J (2020) The influence of wet feed distribution on the density, growth rate and growth variability of Tenebrio molitor. J Ins Food Feed 7(2):141–149. https://doi.org/10.3920/JIFF2020.0049

    Article  Google Scholar 

  26. Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987. https://doi.org/10.1046/j.1365-2672.2003.01915.x

    Article  CAS  Google Scholar 

  27. Duggan JM, Sedgley CM (2007) Biofilm formation of oral and endodontic Enterococcus faecalis. J Endod 33(7):815–818. https://doi.org/10.1016/j.joen.2007.02.016

    Article  PubMed  Google Scholar 

  28. Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Wang Y, Zhang H (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701. https://doi.org/10.1016/j.foodcont.2009.10.010

    Article  CAS  Google Scholar 

  29. Kourkoutas Y, Xolias V, Kallis M, Bezirtzoglou E, Kanellaki M (2005) Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Pro Biochem 40:411–416. https://doi.org/10.1016/j.procbio.2004.01.029

    Article  CAS  Google Scholar 

  30. AOAC (2003) Official methods of analysis of AOAC international, 17th edn. AOAC International, Gaithersburg

    Google Scholar 

  31. ICC (1984) Cereals and cereal products—determination of total fat content, ICC I No. 136. ICC Standard methods

  32. Tan SW, Lai KS, Loh JY (2018) Effects of food wastes on yellow mealworm—Tenebrio molitor larval nutritional profiles and growth performances. Exam Mar Biol Ocean. https://doi.org/10.31031/EIMBO.2018.02.000530

    Article  Google Scholar 

  33. Caparros Megido R, Poelaert C, Ernens M, Liotta M, Blecker C, Danthine S, Tyteca E, Haubruge E, Alabi T, Bindelle J, Francis F (2018) Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res Int 106:503–508. https://doi.org/10.1016/j.foodres.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  34. Janssen RH, Vincken JP, van den Broek LAM, Fogliano V, Lakemond CMM (2017) Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J Agric Food Chem 65:2275–2278. https://doi.org/10.1021/acs.jafc.7b00471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zielinska E, Baraniak B, Karas M, Rybczynska K, Jakubczyk A (2015) Selected species of edible insects as a source of nutrient composition. Food Res Int 77:460–466. https://doi.org/10.1016/j.foodres.2015.09.008

    Article  CAS  Google Scholar 

  36. Mancini S, Fratini F, Turchi B, Mattioli M, Dal Roso A, Tuccinardi T, Nozic S, Paci G (2019) Former foodstuff products in Tenebrio Molitor rearing: effects on growth, chemical composition, microbiological load, and antioxidant status. Animals 9:484. https://doi.org/10.3390/ani9080484

    Article  PubMed Central  Google Scholar 

  37. Dreassi E, Cito A, Zanfini A, Materozzi L, Botta M, Francardi V (2017) Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 52(3):285–294. https://doi.org/10.1007/s11745-016-4220-3

    Article  CAS  PubMed  Google Scholar 

  38. ISO 6887-1:2017. Microbiology of the food chain—preparation of test samples, initial suspension and decimal dilutions for microbiological examination—part 1: general rules for the preparation of the initial suspension and decimal dilutions

  39. de Melo Pereira GV, de Oliveira CB, Magalhães Júnior AI, Thomaz-Soccol V, Soccol CR (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36(8):2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003

    Article  PubMed  Google Scholar 

  40. Tarrah A, da Silva DV, Pakroo S, Corich V, Giacomini A (2020) Genomic and phenotypic assessments of safety and probiotic properties of Streptococcus macedonicus strains of dairy origin. Food Res Int 130:108931. https://doi.org/10.1016/j.foodres.2019.108931

    Article  CAS  PubMed  Google Scholar 

  41. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073. https://doi.org/10.1007/s00217-007-0632-x

    Article  CAS  Google Scholar 

  42. Zoumpourtikoudi V, Pyrgelis N, Chatzigrigoriou M, Tasakis RN, Touraki M (2018) Interactions among yeast and probiotic bacteria enhance probiotic properties and metabolism offering augmented protection to Artemia franciscana against Vibrio anguillarum. Microb Pathog 125:497–506. https://doi.org/10.1016/j.micpath.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  43. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  44. Moreno MRF, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106(1):1–24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026

    Article  Google Scholar 

  45. Vinokurov KS, Elpidina EN, Oppert B, Prabhakar S, Zhuzhikov DP, Dunaevsky YE, Belozersky MA (2006) Diversity of digestive proteinases in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Comp Biochem Physiol B 145:126–137

    Article  CAS  Google Scholar 

  46. Kantas D, Papatsiros VG, Tassis PD, Giavasis I, Bouki P, Tzika ED (2015) A feed additive containing Bacillus toyonensis (Toyocerin®) protects against enteric pathogens in postweaning piglets. J Appl Microb 118(3):727–738. https://doi.org/10.1111/jam.12729

    Article  CAS  Google Scholar 

  47. Hai NV (2015) The use of probiotics in aquaculture. J Appl Microb 119:917–935. https://doi.org/10.1111/jam.12886

    Article  CAS  Google Scholar 

  48. Vigneron A, Jehan C, Rigaud T, Moret Y (2019) Immune defenses of a beneficial pest: the mealworm beetle, Tenebrio molitor. Front Physiol 10:138. https://doi.org/10.3389/fphys.2019.00138

    Article  PubMed  PubMed Central  Google Scholar 

  49. Krawczyk B, Wityk P, Gałęcka M, Michalik M (2021) The many faces of Enterococcus spp.—commensal probiotic and opportunistic pathogen. Microorganisms 9(9):1900. https://doi.org/10.3390/microorganisms9091900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Langella P, Guarner F, Martín R (2019) Editorial: next-generation probiotics: from commensal bacteria to novel drugs and food supplements. Front Microbiol 10:1973. https://doi.org/10.3389/fmicb.2019.01973

    Article  PubMed  PubMed Central  Google Scholar 

  51. Özsoy AN (2019) Modeling of development and water consumption of mealworm (Tenebrio molitor L., 1758) (Coleoptera: Tenebrionidae) larvae using nonlinear growth curves and polynomial functions. Turk J Entomol 43:253–262. https://doi.org/10.1697/entoted.487815

    Article  Google Scholar 

  52. Rodjaroen S, Thongprajukaew K, Khongmuang P, Malawa S, Tuntikawinwong K, Saekhow S (2020) Ontogenic Development of digestive enzymes in mealworm larvae (Tenebrio molitor) and their suitable harvesting time for use as fish feed. Insects 11(6):393. https://doi.org/10.3390/insects11060393

    Article  PubMed Central  Google Scholar 

  53. Kopp-Hoolihan L (2001) Prophylactic and therapeutic uses of probiotics: a review. J Am Diet Assoc 101:229–238

    Article  CAS  Google Scholar 

  54. Maino JL, Kearney MR (2015) Testing mechanistic models of growth in insects. Proc R Soc B 282:20151973. https://doi.org/10.1098/rspb.2015.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chauhan A, Singh R (2019) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77:99–113. https://doi.org/10.1007/s13199-018-0580-1

    Article  Google Scholar 

  56. Kritas SK, Morrison RB (2005) Evaluation of probiotics as a substitute for antibiotics in a large pig nursery. Vet Rec 156(14):447–448. https://doi.org/10.1136/vr.156.14.447

    Article  CAS  PubMed  Google Scholar 

  57. Kabir SML (2009) The role of probiotics in the poultry industry. Int J Mol Sci 10(8):3531–3546. https://doi.org/10.3390/ijms10083531

    Article  CAS  Google Scholar 

  58. Mingmongkolchai S, Panbangred W (2018) Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol 124(6):1334–1346. https://doi.org/10.1111/jam.13690

    Article  CAS  Google Scholar 

  59. Asaduzzaman M, Sofia E, Shakil A, Haque NF, Khan MNA, Ikeda D, Kinoshita S, Abol-Munafi AB (2018) Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides Aquac. Reports 9:37–45. https://doi.org/10.1016/j.aqrep.2017.12.001

    Article  Google Scholar 

  60. Makkar HPS, Tran G, Heuze V, Ankers P (2014) State of the art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008

    Article  CAS  Google Scholar 

  61. Osimani A, Garofalo C, Milanović V, Taccari M, Cardinali F, Aquilanti L, Pasquini M, Mozzon M, Raffaelli N, Ruschioni S, Riolo P, Isidoro N, Clementi F (2017) Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur Food Res Technol 243:1157–1171. https://doi.org/10.1007/s00217-016-2828-4

    Article  CAS  Google Scholar 

  62. Costa S, Pedro S, Lourenço H, Batista I, Teixeira B, Bandarra NM, Murta D, Nunes R, Pires C (2020) Evaluation of Tenebrio molitor larvae as an alternative food source. NFS J 21:57–64. https://doi.org/10.1016/j.nfs.2020.10.001

    Article  Google Scholar 

  63. Benedict RC (1987) Determination of nitrogen and protein content of meat and meat products. Assoc Off Anal Chem 70(1):69–74

    CAS  Google Scholar 

  64. Jäger R, Zaragoza J, Purpura M, Iametti S, Marengo M, Tinsley GM, Anzalone AJ, Oliver JM, Fiore W, Biffi A, Urbina S, Taylor L (2020) Probiotic administration increases amino acid absorption from plant protein: a placebo-controlled, randomized, double-blind, multicenter, crossover study. Prob Antimicrob Proteins 12:1330–1339. https://doi.org/10.1007/s12602-020-09656-5

    Article  CAS  Google Scholar 

  65. Markowiak P, Śliżewska K (2018) The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens 10:21. https://doi.org/10.1186/s13099-018-0250-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mazloom K, Siddiqi I, Covasa M (2019) Probiotics: how effective are they in the fight against obesity? Nutrients 11(2):258. https://doi.org/10.3390/nu11020258

    Article  CAS  PubMed Central  Google Scholar 

  67. Van Broekhoven S, Oonincx DG, Van Huis A, Van Loon JJ (2015) Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J Insect Physiol 73:1–10

    Article  Google Scholar 

  68. Sudha ML, Ramasarma PR, Venkateswara Rao G (2011) Wheat bran stabilization and its use in the preparation of high-fiber pasta. Food Sci Technol Int 17(1):47–53. https://doi.org/10.1177/1082013210368463

    Article  CAS  PubMed  Google Scholar 

  69. Pereira PM, Vicente AF (2013) Meat nutritional composition and nutritive role in the human diet. Meat Sci 93(3):586–592. https://doi.org/10.1016/j.meatsci.2012.09.018

    Article  CAS  PubMed  Google Scholar 

  70. Mishra AK, Kumar SS, Ghosh AR (2019) Probiotic Enterococcus faecalis AG5 effectively assimilates cholesterol and produces fatty acids including propionate. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz039

    Article  PubMed  Google Scholar 

  71. Neijat M, Habtewold J, Shirley RB, Welsher A, Barton J, Thiery P, Kiarie E (2019) Bacillus subtilis strain DSM 29784 modulates the cecal microbiome, concentration of short-chain fatty acids, and apparent retention of dietary components in shaver white chickens during grower, developer, and laying phases. Appl Environ Microbiol 85(14):e00402-e419. https://doi.org/10.1128/AEM.00402-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Français M, Bott R, Dargaignaratz C, Giniès C, Carlin F, Broussolle V, Nguyen-Thé C (2021) Short-chain and unsaturated fatty acids increase sequentially from the lag phase during cold growth of bacillus cereus. Front Microbiol 12:694757. https://doi.org/10.3389/fmicb.2021.694757

    Article  PubMed  PubMed Central  Google Scholar 

  73. Adámková A, Mlček J, Adámek M, Borkovcová M, Bednářová M, Hlobilová V, Knížková I, Juríková T (2020) Tenebrio molitor (Coleoptera: Tenebrionidae)—optimization of rearing conditions to obtain desired nutritional values. J Insect Sci (Online) 20(5):24. https://doi.org/10.1093/jisesa/ieaa100

    Article  CAS  Google Scholar 

  74. Matsuoka H, Hirooka K, Fujita Y (2007) Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. J Biol Chem 282(8):5180–5194. https://doi.org/10.1074/jbc.M606831200

    Article  CAS  PubMed  Google Scholar 

  75. Iggman D, Risérus U (2011) Role of different dietary saturated fatty acids for cardiometabolic risk. Clin Lipidol 6(2):209–223. https://doi.org/10.2217/clp.11.7

    Article  CAS  Google Scholar 

  76. Stanley JC (2009) Stearic acid or palmitic acid as a substitute for trans fatty acids? Lipid Technol 21(8–9):195–198. https://doi.org/10.1002/lite.200900046

    Article  CAS  Google Scholar 

  77. Abdullah MM, Jew S, Jones PJ (2017) Health benefits and evaluation of healthcare cost savings if oils rich in monounsaturated fatty acids were substituted for conventional dietary oils in the United States. Nutr Rev 75(3):163–174. https://doi.org/10.1093/nutrit/nuw062

    Article  PubMed  PubMed Central  Google Scholar 

  78. Abd El Razak A, Ward AC, Glassey J (2014) Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production. Microb Ecol 67(2):454–464. https://doi.org/10.1007/s00248-013-0332-y

    Article  CAS  PubMed  Google Scholar 

  79. Zhang X, Tang H, Chen G, Qiao L, Li J, Liu B, Liu Z, Li M, Liu X (2019) Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. Eur Food Res Technol 245:2631–2640

    Article  CAS  Google Scholar 

  80. Oonincx D, Laurent S, Veenenbos ME, van Loon J (2020) Dietary enrichment of edible insects with omega 3 fatty acids. Insect Sci 27(3):500–509. https://doi.org/10.1111/1744-7917.12669

    Article  CAS  PubMed  Google Scholar 

  81. Lawal K, Kavle R, Akanbi T, Mirosa M, Agyei D (2021) Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia Illucens larvae through feeding. Future Food Future Food 3:1–7

    Google Scholar 

  82. Garofalo C, Milanović V, Cardinali F, Aquilanti L, Clementi F, Osimani A (2019) Current knowledge on the microbiota of edible insects intended for human consumption: a state-of-the-art review. Food Res Int 125:108527. https://doi.org/10.1016/j.foodres.2019.108527

    Article  CAS  PubMed  Google Scholar 

  83. Osimani A, Aquilanti L (2021) Spore-forming bacteria in insect-based foods. Cur Opin Food Sci 37:112–117. https://doi.org/10.1016/j.cofs.2020.10.011

    Article  Google Scholar 

  84. Tuomola EM, Ouwehand AC, Salminen SJ (1999) The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol Med Microbiol 26(2):137–142. https://doi.org/10.1111/j.1574-695X.1999.tb01381.x

    Article  CAS  PubMed  Google Scholar 

  85. Mousavi Khaneghah A, Abhari K, Eş I, Soares MB, Oliveira RBA, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS (2020) Interactions between probiotics and pathogenic microorganisms in hosts and foods: a review. Tr Food Sci Technol 95:205–218. https://doi.org/10.1016/j.tifs.2019.11.022

    Article  CAS  Google Scholar 

  86. Yao Y, Cai X, Fei W, Ye Y, Zhao M, Zheng C (2020) The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1854675

    Article  PubMed  Google Scholar 

  87. Sun Y, O’Riordan MX (2013) Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv Appl Microbiol 85:93–118. https://doi.org/10.1016/B978-0-12-407672-3.00003-4

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S (2019) Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 128:171–177. https://doi.org/10.1016/j.micpath.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  89. Ness, IF, Diep DB, Ike Y (2014) Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In: Gilmore MS, et al (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston

  90. Wang J, Xu H, Liu S, Song B, Liu H, Li F, Deng S, Wang G, Zeng H, Zeng X, Xu D, Zhang B, Xin B (2021) Toyoncin, a novel leaderless bacteriocin that is produced by bacillus toyonensis XIN-YC13 and specifically targets B cereus and Listeria monocytogenes. Appl Environ Microbiol 87(12):18521. https://doi.org/10.1128/AEM.00185-21

    Article  Google Scholar 

  91. Agamennone V, van Straalen J, Brouwer A, de Boer TE, Hensbergen PJ et al (2019) Genome annotation and antimicrobial properties of Bacillus toyonensis VU-DES13, isolated from the Folsomia candida gut. Entomol Exp Appl 167:269–285. https://doi.org/10.1111/eea.12763

    Article  CAS  Google Scholar 

  92. Karagiota A, Tsitsopoulou H, Tasakis RN, Zoumpourtikoudi V, Touraki M (2021) Characterization and quantitative determination of a diverse group of Bacillus subtilis subsp. subtilis NCIB 3610 antibacterial peptides. Probiotics Antimicrob Proteins 13:555–570. https://doi.org/10.1007/s12602-020-09706-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially financially supported by the Graduate Program “Applications of Biology” of the School of Biology, Aristotle University of Thessaloniki. Mrs. Rizou was partially financially supported by the Hellenic Entomological Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Touraki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human participants or vertebrate animals, as ruled by the Directive 2010/63/EU, performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 228 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizou, E., Kalogiouri, N., Bisba, M. et al. Amelioration of growth, nutritional value, and microbial load of Tenebrio molitor (Coleoptera: Tenebrionidae) through probiotic supplemented feed. Eur Food Res Technol 248, 727–739 (2022). https://doi.org/10.1007/s00217-021-03925-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03925-5

Keywords

Navigation