Skip to main content
Log in

Coffee beyond the cup: analytical techniques used in chemical composition research—a review

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This review contemplates the last twenty years of studies that have coffee as the primary objective. Diverse aspects were addressed, the Brazilian and global production, classification norms, the biological activity of its constituents, and, mostly, the analytical techniques used to verify its chemical composition. Coffee is one of the most consumed beverages globally, exported from more than 47 countries, and has Brazil as its principal producer. Traditionally, the classification of beverage quality performs by a sensory test, evaluating characteristics such as aroma, taste, and texture. The studies carried out show the richness of information that the chemical constituents bring to the final product. The different analytical techniques allied to the chemometric methods show that the constituents or classes of substances in the coffee act like markers of economically important species and geographical origin. These results have led to the development of quality control methodologies used along with the sensory test. Therefore, this review will contribute to the diffusion of analytical techniques used to investigate the coffee chemical constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-CQA:

3-O-caffeoylquinic acid

4-CQA:

4-O-caffeoylquinic acid

5-CQA:

5-O-caffeoylquinic acid

5-HMF:

5-Hydroxymethylfurfural

16-OMC:

16-O-methylcafestol

16-OMK:

16-O-methylkahweol

ABIC:

Brazilian Coffee Industry Association

AOAC:

Association of Official Agricultural Chemists

ASE:

Accelerated solvent extraction

ATR-FT-IR:

Attenuated total reflectance fourier transform infrared spectroscopy

BIS:

Black, immature, and sour

CD:

Circular dichroism

CGA:

Chlorogenic acids

CPMAS:

Magic angle spinning with cross-polarization

CPMASDD:

Magic angle spinning with cross-polarization and dipolar dephasing

CQA:

Caffeoylquinic acids

diCQA:

Dicaffeoylquinic acid

DHS:

Sequential dynamic headspace

DRIFTS:

Diffuse reflectance infrared Fourier transform spectroscopy

ESI(-)FT-ICR MS:

Negative-ion mode electrospray ionization fourier transform ion cyclotron resonance mass spectrometry

ESI-MS:

Electrospray ionization mass spectrometry

FA:

Fatty acids

FD-IC:

Freeze-drying instant coffee

FESEM:

Field emission scanning electron microscopy

FQA:

Feruloylquinic acid

FT-IR-PAS:

Fourier Transform infrared photoacoustic spectroscopy

GA:

Genetic algorithms

GC:

Gas chromatography

GC-C-IRMS:

Gas chromatography-combustion-isotope ratio mass spectrometry

GCE:

Green coffee extract

GC-FID:

Gas chromatography with flame ionization detection

GC × GC-FID:

Two-dimensional GC-FID

GC/MS:

Gas chromatography mass spectrometry

GC-Q/MS:

GC coupled with quadrupole mass spectrometry

GPC:

Gel permeation chromatography

GQ:

Global quality

HCA:

Hierarchical cluster analysis

HG-ICP-OES:

Hydride generation inductively coupled plasma atomic optical spectrometry

HIS:

Hyperspectral imaging

HPAEC:

High-performance anion-exchange chromatography

HPLC:

High-performance liquid chromatography

HPLC-DAD:

HPLC with diode array detection

HR-CS AAS:

High-resolution continuum source atomic absorption spectrometry

HRGC:

High-resolution gas chromatography

HR-ICP-MS:

High resolution inductively coupled plasma mass spectrometry

HS-SPME:

Head space solid-phase microextraction

IC:

Instant coffee

ICO:

International Coffee Organization

ICP-AES:

Inductively coupled plasma atomic emission spectrometry

ICP-OES:

Inductively coupled plasma atomic optical spectrometry

ISO:

International Organization for Standardization

LC:

Liquid chromatography

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

LC/UV/ESI-MS:

Liquid chromatography coupled with ultraviolet and electrospray ionization mass spectrometry

LDA:

Linear discriminant analysis

LIBS:

Laser-induced breakdown spectroscopy

LOD:

Limit of detection

LOQ:

Limit of quantification

MALDI-TOF MS:

Matrix-assisted laser desorption ionization-time of flight mass spectrometry

MAS:

Magic angle spinning

MLR:

Multiple linear regression

MS:

Mass spectrometry

MSPC:

Multivariate statistical process control

MVM:

Multi-volatile method

NIR:

Near infrared spectroscopy

OPLS-DA:

Orthogonal projection to latent structures discriminant analysis

OPS:

Ordered predictors selection

OSC:

Orthogonal signal correction

PAH:

Polycyclic aromatic hydrocarbon

PCA:

Principal component analysis

PC1:

First principal component

pCoQA:

p-coumaroylquinic acid

PQC:

Coffee quality program (ABIC)

PS-MS:

Paper spray mass spectrometry

PTR:

Proton-transfer-reaction

SBSE/SPME:

Stir bar sorptive extraction solid-phase microextraction

SCAA:

Specialty Coffee Association of America

SCG:

Spent coffee grounds

SD-IC:

Spray drying instant coffee

smSPME-ss-GC/MS:

Simultaneous multiple solid-phase microextraction-single shot-gas chromatography/mass spectrometry

SPA-LDA:

Successive projections algorithm-linear discriminant analysis

SPI-TOF MS:

Single-photon ionization time-of-flight mass spectrometry

SPME-GC:

Solid-phase microextraction-gas chromatography

ssNMR:

Solid-state NMR spectroscopy

SVOC:

Semi-volatile organic compound

TAG:

Triacylglycerol

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

TTA:

Titratable acidity

UHPLC-MS/MS:

Ultra-high-performance liquid chromatography-tandem mass spectrometry

UPLC MS-IM-QTOF:

Ultra-performance liquid chromatography mass spectrometry-ion mobility-time of flight

UV-Vis:

Ultraviolet-visible spectroscopy

VOC:

Volatile organic compound

XRD:

X-ray diffraction

References

  1. International Coffee Organization (ICO) (2011) Rules on statistics: statistical reports. Report ICC 102–10. http://www.ico.org/documents/icc-102-10e-rules-statistical-reports.pdf. Accessed 26 Feb 2019

  2. International Coffee Organization (ICO) (2020) Coffee Market Report. June. http://www.ico.org/. Accessed 18 Sep 2020

  3. Martins AL (2012) História do Café, 2nd edn. Contexto, São Paulo

    Google Scholar 

  4. Toledo PRAB, Pezza L, Pezza HR, Toci AT (2016) Relationship between the different aspects related to coffee quality and their volatile compounds. Compr Rev Food Sci Food Saf 15:705–719

    Article  PubMed  Google Scholar 

  5. Del Campo G, Berregi I, Caracena R, Zuriarrain J (2010) Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry. Talanta 81:367–371

    Article  PubMed  Google Scholar 

  6. Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, Dickson A, Rezai-Zadeh K, Tan J, Citron BA, Lin X, Echeverria V, Potter H (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-β levels in aged alzheimer’s disease mice. J Alzheimer’s Dis 17:661–680

    Article  CAS  Google Scholar 

  7. Johnson S, Koh W-P, Wang R, Govindarajan S, Yu MC, Yuan J-M (2011) Coffee consumption and reduced risk of hepatocellular carcinoma: findings from the Singapore Chinese Health Study. Cancer Causes Control 22:503–510

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cano-Marquina A, Tarín JJ, Cano A (2013) The impact of coffee on health. Maturitas 75:7–21

    Article  CAS  PubMed  Google Scholar 

  9. International Coffee Organization (ICO) (2019) Total production by all exporting countries. http://www.ico.org/prices/po-production.pdf. Accessed 26 Feb 2019

  10. United States Department of Agriculture (USDA) (2019) Coffee: World Markets and Trade. December 2019. https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/sq87c919h/8w32rm91m/coffee.pdf Accessed 23 Nov 2020

  11. BRASIL. National Supply Company (CONAB) (2020) 1° Levantamento de Café—Safra 2020. https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe. Accessed 19 Jul 2020

  12. Frederico S (2017) Território e cafeicultura no Brasil: uma proposta de periodização. GEOUSP Espaço e Tempo 21:73

    Article  Google Scholar 

  13. Dos Santos HD, Alvarenga YA, Boffo EF (2020) 1H NMR metabolic fingerprinting of Chapada Diamantina/Bahia (Brazil) coffees as a tool to assessing their qualities. Microchem J 152:104293

    Article  Google Scholar 

  14. Brazilian Association of Coffee Industries (ABIC) (2019) 16th National Coffee Quality Contest: Origins of Brazil: 2019 Crop. https://www.abic.com.br/concursonacional/leilao/. Accessed 20 Jul 2020

  15. Cup of Excellence results (2019) Brazil 2019, Alliance for Coffee Excellence. https://allianceforcoffeeexcellence.org/brazil-2019/. Accessed 20 Jul 2020

  16. Brazilian Association of Coffee Industries (ABIC) (2004) Coffee Quality Program (PQC). https://www.abic.com.br/certificacao/qualidade. Accessed 20 Jul 2020

  17. Brazilian Association of Coffee Industries (ABIC) (2020) Coffee quality categories. https://www.abic.com.br/recomendacoes-tecnicas/categorias-de-qualidade-do-cafe/. Accessed 20 Jul 2020

  18. BRASIL. Ministry of Agriculture, Livestock, and Supply (MAPA) (2003) Normative Instruction 08/03, 11 June 2003. Regulamento técnico de identidade e de qualidade para a classificação do café beneficiado grão cru. Diário Oficial da União. https://www.jusbrasil.com.br/diarios/580954/pg-4-secao-1-diario-oficial-da-uniao-dou-de-13-06-2003?ref=serp. Accessed 30 May 2019

  19. Coffee Research Institute (2020) Classification of Green Coffee Beans: Brazil / New York Method. http://www.coffeeresearch.org/coffee/brazilclass.htm. Accessed 04 Dec 2020

  20. Brazilian Association of Coffee Industries (ABIC) (2018) Norma de qualidade. https://www.abic.com.br/wp-content/uploads/2018/04/Norma-PQC-26-06-2018-rev-30.pdf. Accessed 23 Sep 2020

  21. International Organization for Standardization (ISO) (2020) https://www.iso.org/home.html. Accessed 20 Jul 2020

  22. International Coffee Organization (ICO) (2018) National Quality Standards. http://www.ico.org/documents/cy2017-18/icc-122-12e-national-quality-standards.pdf Accessed 24 Nov 2020

  23. Debastiani R, Iochims dos Santos CE, Maciel Ramos M, Sobrosa Souza V, Amaral L, Yoneama ML, Ferraz Dias J (2019) Elemental analysis of Brazilian coffee with ion beam techniques: from ground coffee to the final beverage. Food Res Int 119:297–304

    Article  CAS  PubMed  Google Scholar 

  24. Nogueira M, Trugo LC (2003) Distribuição de isômeros de ácido clorogênico e teores de cafeína e trigonelina em cafés solúveis brasileiros. Ciência e Tecnol Aliment 23:296–299

    Article  CAS  Google Scholar 

  25. Prediger RDS (2010) Effects of caffeine in parkinson’s disease: from neuroprotection to the management of motor and non-motor symptoms. J Alzheimer’s Dis 20:S205–S220

    Article  CAS  Google Scholar 

  26. Weldegebreal B, Redi-Abshiro M, Chandravanshi BS (2017) Development of new analytical methods for the determination of caffeine content in aqueous solution of green coffee beans. Chem Cent J 11:126–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farah A, Donangelo CM (2006) Phenolic compounds in coffee. Brazilian J Plant Physiol 18:23–36

    Article  CAS  Google Scholar 

  28. Jeszka-Skowron M, Zgoła-Grześkowiak A, Grześkowiak T (2015) Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur Food Res Technol 240:19–31

    Article  CAS  Google Scholar 

  29. Jeszka-Skowron M, Stanisz E, De Peña MP (2016) Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT 73:243–250

    Article  CAS  Google Scholar 

  30. Regazzoni L, Saligari F, Marinello C, Rossoni G, Aldini G, Carini M, Orioli M (2016) Coffee silver skin as a source of polyphenols: high resolution mass spectrometric profiling of components and antioxidant activity. J Funct Foods 20:472–485

    Article  CAS  Google Scholar 

  31. Diviš P, Pořízka J, Kříkala J (2019) The effect of coffee beans roasting on its chemical composition. Potravin Slovak J Food Sci 13:344–350

    Google Scholar 

  32. Murkovic M, Bornik M-A (2007) Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol Nutr Food Res 51:390–394

    Article  CAS  PubMed  Google Scholar 

  33. Murkovic M, Pichler N (2006) Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol Nutr Food Res 50:842–846

    Article  CAS  PubMed  Google Scholar 

  34. Casal S, Alves MR, Mendes E, Oliveira MBPP, Ferreira MA (2003) Discrimination between Arabica and Robusta Coffee coffee species on the basis of their amino acid enantiomers. J Agric Food Chem 51:6495–6501

    Article  CAS  PubMed  Google Scholar 

  35. Coelho C, Ribeiro M, Cruz ACS, Domingues MRM, Coimbra MA, Bunzel M, Nunes FM (2014) Nature of phenolic compounds in coffee melanoidins. J Agric Food Chem 62:7843–7853

    Article  CAS  PubMed  Google Scholar 

  36. Gniechwitz D, Reichardt N, Ralph J, Blaut M, Steinhart H, Bunzel M (2008) Isolation and characterisation of a coffee melanoidin fraction. J Sci Food Agric 88:2153–2160

    Article  CAS  Google Scholar 

  37. Wang H, Qian H, Yao W (2011) Melanoidins produced by the Maillard reaction: structure and biological activity. Food Chem 128:573–584

    Article  CAS  Google Scholar 

  38. Frank O, Zehentbauer G, Hofmann T (2006) Bioresponse-guided decomposition of roast coffee beverage and identification of key bitter taste compounds. Eur Food Res Technol 222:492–508

    Article  CAS  Google Scholar 

  39. Blumberg S, Frank O, Hofmann T (2010) Quantitative studies on the influence of the bean roasting parameters and hot water percolation on the concentrations of bitter compounds in coffee brew. J Agric Food Chem 58:3720–3728

    Article  CAS  PubMed  Google Scholar 

  40. Mori ALB, Kalschne DL, Ferrão MAG, da Fonseca AFA, Ferrão RG, de Benassi MT (2016) Diterpenes in Coffea canephora. J Food Compos Anal 52:52–57

    Article  CAS  Google Scholar 

  41. Schievano E, Finotello C, De Angelis E, Mammi S, Navarini L (2014) Rapid authentication of coffee blends and quantification of 16-O-methylcafestol in roasted coffee beans by Nuclear Magnetic Resonance. J Agric Food Chem 62:12309–12314

    Article  CAS  PubMed  Google Scholar 

  42. Ochiai N, Tsunokawa J, Sasamoto K, Hoffmann A (2014) Multi-volatile method for aroma analysis using sequential dynamic headspace sampling with an application to brewed coffee. J Chromatogr A 1371:65–73

    Article  CAS  PubMed  Google Scholar 

  43. Association of Official Agricultural Chemists (AOAC). Method 14.029 (1965) Official Methods of Analysis. www.aoac.org Accessed 04 Dec 2020

  44. Speer K, Kölling-Speer I (2006) The lipid fraction of the coffee bean. Braz J Plant Physiol 18:201–216

    Article  CAS  Google Scholar 

  45. Streuli H (1970) Kaffee. In: Schormüller J. (eds) Handbuch der Lebensmittelchemie VI, Springer Verlag. Berlin, Heidelberg. pp 19–21

  46. Araújo JMA, Sandi D (2007) Extraction of coffee diterpenes and coffee oil using supercritical carbon dioxide. Food Chem 101:1087–1094

    Article  Google Scholar 

  47. Tsukui A, Santos HM Jr, Oigman SS, Souza ROMA, Bizzo HR, Rezende CM (2014) Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC. Food Chem 164:266–271

    Article  CAS  PubMed  Google Scholar 

  48. Kwon D-J, Jeong H-J, Moon H, Kim H-N, Cho J-H, Lee J-E, Hong KS, Hong Y-S (2015) Assessment of green coffee bean metabolites dependent on coffee quality using a 1H NMR-based metabolomics approach. Food Res Int 67:175–182

    Article  CAS  Google Scholar 

  49. Budryn G, Nebesny E, Podsędek A, Żyżelewicz D, Materska M, Jankowski S, Janda B (2009) Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans. Eur Food Res Technol 228:913–922

    Article  CAS  Google Scholar 

  50. Ludwig IA, Sanchez L, Caemmerer B, Kroh LW, De Peña MP, Cid C (2012) Extraction of coffee antioxidants: Impact of brewing time and method. Food Res Int 48:57–64

    Article  CAS  Google Scholar 

  51. Monakhova YB, Ruge W, Kuballa T, Ilse M, Winkelmann O, Diehl B, Thomas F, Lachenmeier DW (2015) Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy. Food Chem 182:178–184

    Article  CAS  PubMed  Google Scholar 

  52. Cagliani LR, Pellegrino G, Giugno G, Consonni R (2013) Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends. Talanta 106:169–173

    Article  CAS  PubMed  Google Scholar 

  53. Bartel C, Mesias M, Morales FJ (2015) Investigation on the extractability of melanoidins in portioned espresso coffee. Food Res Int 67:356–365

    Article  CAS  Google Scholar 

  54. Caporaso N, Whitworth MB, Grebby S, Fisk ID (2018) Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Res Int 106:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Caporaso N, Whitworth MB, Grebby S, Fisk ID (2018) Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging. J Food Eng 227:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alves RC, Casal S, Oliveira B (2009) Benefícios do café na saúde: mito ou realidade? Quim Nova 32:2169–2180

    Article  CAS  Google Scholar 

  57. Butt MS, Sultan MT (2011) Coffee and its consumption: Benefits and risks. Crit Rev Food Sci Nutr 51:363–373

    Article  CAS  PubMed  Google Scholar 

  58. Chu Y-F, Brown PH, Lyle BJ, Chen Y, Black RM, Williams CE, Lin Y-C, Hsu C-W, Cheng IH (2009) Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees. J Agric Food Chem 57:9801–9808

    Article  CAS  PubMed  Google Scholar 

  59. Gökcen BB, Şanlier N (2019) Coffee consumption and disease correlations. Crit Rev Food Sci Nutr 59:336–348

    Article  PubMed  Google Scholar 

  60. Santos MH, Batista BL, Duarte SMS, Abreu CMP, Gouvêa CMCP (2007) Influência do processamento e da torrefação sobre a atividade antioxidante do café (Coffea arabica). Quim Nova 30:604–610

    Article  Google Scholar 

  61. Tai J, Cheung S, Chan E, Hasman D (2010) Antiproliferation effect of commercially brewed coffees on human ovarian cancer cells in vitro. Nutr Cancer 62:1044–1057

    Article  CAS  PubMed  Google Scholar 

  62. Nuhu AA (2014) Bioactive micronutrients in coffee: Recent analytical approaches for characterization and quantification. ISRN Nutr 2014:384230

    Article  PubMed  PubMed Central  Google Scholar 

  63. Arendash GW, Cao C (2010) Caffeine and coffee as therapeutics against Alzheimer’s Disease. J Alzheimer’s Dis 20:S117–S126

    Article  CAS  Google Scholar 

  64. Chu Y-F, Chang W-H, Black RM, Liu J-R, Sompol P, Chen Y, Wei H, Zhao Q, Cheng IH (2012) Crude caffeine reduces memory impairment and amyloid β1-42 levels in an Alzheimer’s mouse model. Food Chem 135:2095–2102

    Article  CAS  PubMed  Google Scholar 

  65. Lima AR, Pereira RGFA, Abrahão SA, da Duarte SM, S, Paula FB de A (2010) Compostos bioativos do café: atividade antioxidante in vitro do café verde e torrado antes e após a descafeinação. Quim Nova 33:20–24

    Article  CAS  Google Scholar 

  66. Umemura T, Ueda K, Nishioka K, Hidaka T, Takemoto H, Nakamura S, Jitsuiki D, Soga J, Goto C, Chayama K, Yoshizumi M, Higashi Y (2006) Effects of acute administration of caffeine on vascular function. Am J Cardiol 98:1538–1541

    Article  CAS  PubMed  Google Scholar 

  67. Kwon S-H, Lee H-K, Kim J-A, Hong S-I, Kim H-C, Jo T-H, Park Y-I, Lee C-K, Kim Y-B, Lee S-Y, Jang C-G (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649:210–217

    Article  CAS  PubMed  Google Scholar 

  68. Narita Y, Inouye K (2011) Inhibitory effects of chlorogenic acids from green coffee beans and cinnamate derivatives on the activity of porcine pancreas α-amylase isozyme I. Food Chem 127:1532–1539

    Article  CAS  Google Scholar 

  69. Serina JC, Castilho PC, Fernandes MX (2016) Caffeoylquinic acids as inhibitors for HIV-I protease and HIV-I integrase. A Molecular docking study. SDRP J Comput Chem Mol Model 1:34–37

    Google Scholar 

  70. Ren Y, Wang C, Xu J, Wang S (2019) Cafestol and kahweol: a review on their bioactivities and pharmacological properties. Int J Mol Sci 20:4238–4252

    Article  CAS  PubMed Central  Google Scholar 

  71. Cavin C, Holzhaeuser D, Scharf G, Constable A, Huber W, Schilter B (2002) Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem Toxicol 40:1155–1163

    Article  CAS  PubMed  Google Scholar 

  72. Lee K-A, Chae J-I, Shim J-H (2012) Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J Biomed Sci 19:60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mellbye FB, Jeppesen PB, Shokouh P, Laustsen C, Hermansen K, Gregersen S (2017) Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J Nat Prod 80:2353–2359

    Article  CAS  PubMed  Google Scholar 

  74. Baek J-H, Kim N-J, Song J-K, Chun K-H (2017) Kahweol inhibits lipid accumulation and induces glucose-uptake through activation of AMP-activated protein kinase (AMPK). BMB Rep 50:566–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, Lang R, Hofmann T, Marko D (2011) Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem 22:426–440

    Article  CAS  PubMed  Google Scholar 

  76. Nieber K (2017) The impact of coffee on health. Planta Med 83:1256–1263

    Article  CAS  PubMed  Google Scholar 

  77. Lai GY, Weinstein SJ, Albanes D, Taylor PR, McGlynn KA, Virtamo J, Sinha R, Freedman ND (2013) The association of coffee intake with liver cancer incidence and chronic liver disease mortality in male smokers. Br J Cancer 109:1344–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lang R, Dieminger N, Beusch A, Lee YM, Dunkel A, Suess B, Skurk T, Wahl A, Hauner H, Hofmann T (2013) Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal Bioanal Chem 405:8487–8503

    Article  CAS  PubMed  Google Scholar 

  79. Cai L, Ma D, Zhang Y, Liu Z, Wang P (2012) The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 66:872–877

    Article  CAS  PubMed  Google Scholar 

  80. Kim S-D (2015) α-Glucosidase inhibitor isolated from coffee. J Microbiol Biotechnol 25:174–177

    Article  CAS  PubMed  Google Scholar 

  81. Herawati D, Giriwono PE, Dewi FNA, Kashiwagi T, Andarwulan N (2019) Three major compounds showing significant antioxidative, α-glucosidase inhibition, and antiglycation activities in Robusta coffee brew. Int J Food Prop 22:994–1010

    Article  CAS  Google Scholar 

  82. Eggers R, Pietsch A (2001) Technology I: Roasting. In: Clarke RJ, Vitzthum OG (eds) Coffee: recent developments. Blackwell Science, London, pp 90–107

    Chapter  Google Scholar 

  83. Quintero GIP (2011) Composición química de una taza de café. Cenicafe, Chinchiná Avances Técnicos No, p 414

    Google Scholar 

  84. Bertrand B, Boulanger R, Dussert S, Ribeyre F, Berthiot L, Descroix F, Joët T (2012) Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem 135:2575–2583

    Article  CAS  PubMed  Google Scholar 

  85. Silva SDA, Lima JSS (2012) Avaliação da variabilidade do estado nutricional e produtividade de café por meio da análise de componentes principais e geoestatística. Rev Ceres 59:271–277

    Article  CAS  Google Scholar 

  86. Marcucci CT, Benassi MT, Almeida MB, Nixdorf SL (2013) Teores de trigonelina, ácido 5-cafeoilquínico, cafeína e melanoidinas em cafés solúveis comerciais brasileiros. Quim Nova 36:544–548

    Article  CAS  Google Scholar 

  87. de Souza RMN, Canuto GAB, Dias RCE, de Benassi MT (2010) Teores de compostos bioativos em cafés torrados e moídos comerciais. Quim Nova 33:885–890

    Article  Google Scholar 

  88. Arana VA, Medina J, Alarcon R, Moreno E, Heintz L, Schäfer H, Wist J (2015) Coffee’s country of origin determined by NMR: the Colombian case. Food Chem 175:500–506

    Article  CAS  PubMed  Google Scholar 

  89. Toci AT, de Moura Ribeiro MV, de Toledo PRAB, Boralle N, Pezza HR, Pezza L (2018) Fingerprint and authenticity roasted coffees by 1H-NMR: the Brazilian coffee case. Food Sci Biotechnol 27:19–26

    Article  CAS  PubMed  Google Scholar 

  90. Toci AT, Farah A, Pezza HR, Pezza L (2016) Coffee adulteration: More than two decades of research. Crit Rev Anal Chem 46:83–92

    Article  CAS  PubMed  Google Scholar 

  91. de Martins V, C, Godoy RL de O, Gouvêa ACMS, Santiago MCP de A, Borguini RG, Braga EC de O, Pacheco S, Nascimento L da S de M do (2018) Fraud investigation in commercial coffee by chromatography. Food Qual Saf 2:121–133

    Article  Google Scholar 

  92. Alonso-Salces RM, Serra F, Reniero F, HÉberger K (2009) Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): Chemometric evaluation of phenolic and methylxanthine contents. J Agric Food Chem 57:4224–4235

    Article  CAS  PubMed  Google Scholar 

  93. Arana VA, Medina J, Esseiva P, Pazos D, Wist J (2016) Classification of coffee beans by GC-C-IRMS, GC-MS, and 1H-NMR. J Anal Methods Chem 2016:8564584

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ginz M, Balzer HH, Bradbury AGW, Maier HG (2000) Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. Eur Food Res Technol 211:404–410

    Article  CAS  Google Scholar 

  95. Mayer F, Czerny M, Grosch W (2000) Sensory study of the character impact aroma compounds of a coffee beverage. Eur Food Res Technol 211:272–276

    Article  CAS  Google Scholar 

  96. Perrone D, Donangelo CM, Farah A (2008) Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography-mass spectrometry. Food Chem 110:1030–1035

    Article  CAS  PubMed  Google Scholar 

  97. Redgwell RJ, Trovato V, Curti D, Fischer M (2002) Effect of roasting on degradation and structural features of polysaccharides in Arabica coffee beans. Carbohydr Res 337:421–431

    Article  CAS  PubMed  Google Scholar 

  98. Zanin RC, Corso MP, Kitzberger CSG, dos Scholz MB, S, Benassi M de T (2016) Good cup quality roasted coffees show wide variation in chlorogenic acids content. LWT Food Sci Technol 74:480–483

    Article  CAS  Google Scholar 

  99. Gutiérrez Ortiz AL, Berti F, Solano Sánchez W, Navarini L, Colomban S, Crisafulli P, Forzato C (2019) Distribution of p-coumaroylquinic acids in commercial Coffea spp. of different geographical origin and in other wild coffee species. Food Chem 286:459–466

    Article  PubMed  Google Scholar 

  100. Vanesa D, Ana P (2013) Occurrence of Ochratoxin A in coffee beans, ground roasted coffee and soluble coffee and method validation. Food Control 30:675–678

    Article  CAS  Google Scholar 

  101. Guizellini FC, Marcheafave GG, Rakocevic M, Bruns RE, Scarminio IS, Soares PK (2018) PARAFAC HPLC-DAD metabolomic fingerprint investigation of reference and crossed coffees. Food Res Int 113:9–17

    Article  CAS  PubMed  Google Scholar 

  102. Cossignani L, Montesano D, Simonetti MS, Blasi F (2016) Authentication of Coffea arabica according to triacylglycerol stereospecific composition. J Anal Methods Chem 2016:1–7

    Article  Google Scholar 

  103. Novaes FJM, Silva Junior AI, Kulsing C, Nolvachai Y, Bizzo HR, Aquino Neto FR, de, Rezende CM, Marriott PJ (2019) New approaches to monitor semi-volatile organic compounds released during coffee roasting using flow-through/active sampling and comprehensive two-dimensional gas chromatography. Food Res Int 119:349–358

    Article  CAS  PubMed  Google Scholar 

  104. Knysak D (2017) Volatile compounds profiles in unroasted Coffea arabica and Coffea canephora beans from different countries. Food Sci Technol 37:444–448

    Article  Google Scholar 

  105. Aquino FJT, Augusti R, de Alves JO, Diniz MER, Morais SAL, Alves BHP, Nascimento EA, Sabino AA (2014) Direct infusion electrospray ionization mass spectrometry applied to the detection of forgeries: roasted coffees adulterated with their husks. Microchem J 117:127–132

    Article  CAS  Google Scholar 

  106. Garrett R, Schmidt EM, Pereira LFP, Kitzberger CSG, Scholz MBS, Eberlin MN, Rezende CM (2013) Discrimination of arabica coffee cultivars by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. LWT Food Sci Technol 50:496–502

    Article  CAS  Google Scholar 

  107. Correia RM, Loureiro LB, Rodrigues RRT, Costa HB, Oliveira BG, Filgueiras PR, Thompson CJ, Lacerda V, Romão W (2016) Chemical profiles of Robusta and Arabica coffee by ESI(−)FT-ICR MS and ATR-FTIR: a quantitative approach. Anal Methods 8:7678–7688

    Article  Google Scholar 

  108. Hertz-Schünemann R, Streibel T, Ehlert S, Zimmermann R (2013) Looking into individual coffee beans during the roasting process: direct micro-probe sampling on-line photo-ionisation mass spectrometric analysis of coffee roasting gases. Anal Bioanal Chem 405:7083–7096

    Article  PubMed  Google Scholar 

  109. Sánchez López JA, Wellinger M, Gloess AN, Zimmermann R, Yeretzian C (2016) Extraction kinetics of coffee aroma compounds using a semi-automatic machine: on-line analysis by PTR-ToF-MS. Int J Mass Spectrom 401:22–30

    Article  Google Scholar 

  110. Dias RCE, de Faria-Machado AF, Mercadante AZ, Bragagnolo N, Benassi MT (2014) Roasting process affects the profile of diterpenes in coffee. Eur Food Res Technol 239:961–970

    Article  CAS  Google Scholar 

  111. Angelino D, Tassotti M, Brighenti F, Del Rio D, Mena P (2018) Niacin, alkaloids and (poly)phenolic compounds in the most widespread Italian capsule-brewed coffees. Sci Rep 8:17874

    Article  PubMed  PubMed Central  Google Scholar 

  112. Iwasa K, Setoyama D, Shimizu H, Seta H, Fujimura Y, Miura D, Wariishi H, Nagai C, Nakahara K (2015) Identification of 3-methylbutanoyl glycosides in green Coffea arabica beans as causative determinants for the quality of coffee flavors. J Agric Food Chem 63:3742–3751

    Article  CAS  PubMed  Google Scholar 

  113. Sittipod S, Schwartz E, Paravisini L, Peterson DG (2019) Identification of flavor modulating compounds that positively impact coffee quality. Food Chem 301:125250

    Article  CAS  PubMed  Google Scholar 

  114. Xu L, Lao F, Xu Z, Wang X, Chen F, Liao X, Chen A, Yang S (2019) Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomic approach to discriminate coffee brewed by different methods. Food Chem 286:106–112

    Article  CAS  PubMed  Google Scholar 

  115. Souard F, Delporte C, Stoffelen P, Thévenot EA, Noret N, Dauvergne B, Kauffmann J-M, Van Antwerpen P, Stévigny C (2018) Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS. Food Chem 245:603–612

    Article  CAS  PubMed  Google Scholar 

  116. Rothwell J, Loftfield E, Wedekind R, Freedman N, Kambanis C, Scalbert A, Sinha R (2019) A metabolomic study of the variability of the chemical composition of commonly consumed coffee brews. Metabolites 9:17–29

    Article  PubMed Central  Google Scholar 

  117. Bandeira RDCC, Toci AT, Trugo LC, Farah A (2009) Composição volátil dos defeitos intrínsecos do café por CG/EM-headspace. Quim Nova 32:309–314

    Article  CAS  Google Scholar 

  118. Guatemala-Morales GM et al (2016) Validation of analytical conditions for determination of polycyclic aromatic hydrocarbons in roasted coffee by gas chromatography-mass spectrometry. Food Chem 197:747–753

    Article  CAS  PubMed  Google Scholar 

  119. Da Silva Taveira JH, Borém FM, Figueiredo LP, Reis N, Franca AS, Harding SA, Tsai C-J (2014) Potential markers of coffee genotypes grown in different Brazilian regions: a metabolomics approach. Food Res Int 61:75–82

    Article  Google Scholar 

  120. Jumhawan U, Putri SP, Yusianto ME, Bamba T, Fukusaki E (2013) Selection of discriminant markers for authentication of Asian Palm Civet Coffee (Kopi Luwak): a metabolomics approach. J Agric Food Chem 61:7994–8001

    Article  CAS  PubMed  Google Scholar 

  121. Ribeiro JS, Augusto F, Salva TJG, Ferreira MMC (2012) Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics. Talanta 101:253–260

    Article  CAS  PubMed  Google Scholar 

  122. Mestdagh F, Davidek T, Chaumonteuil M, Folmer B, Blank I (2014) The kinetics of coffee aroma extraction. Food Res Int 63:271–274

    Article  CAS  Google Scholar 

  123. Bressanello D, Liberto E, Cordero C, Rubiolo P, Pellegrino G, Ruosi MR, Bicchi C (2017) Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC-MS to describe the sensory properties in cup. Food Chem 214:218–226

    Article  CAS  PubMed  Google Scholar 

  124. Lee C, Lee Y, Lee J-G, Buglass AJ (2013) Development of a simultaneous multiple solid-phase microextraction-single shot-gas chromatography/mass spectrometry method and application to aroma profile analysis of commercial coffee. J Chromatogr A 1295:24–41

    Article  CAS  PubMed  Google Scholar 

  125. Barbin DF, Felicio ALSM, Sun D-W, Nixdorf SL, Hirooka EY (2014) Application of infrared spectral techniques on quality and compositional attributes of coffee: an overview. Food Res Int 61:23–32

    Article  CAS  Google Scholar 

  126. Buratti S, Sinelli N, Bertone E, Venturello A, Casiraghi E, Geobaldo F (2015) Discrimination between washed Arabica, natural Arabica and Robusta coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis. J Sci Food Agric 95:2192–2200

    Article  CAS  PubMed  Google Scholar 

  127. Medina J, Caro Rodríguez D, Arana VA, Bernal A, Esseiva P, Wist J (2017) Comparison of attenuated total reflectance mid-infrared, near infrared, and 1H-nuclear magnetic resonance spectroscopies for the determination of coffee’s geographical origin. Int J Anal Chem 2017:7210463

    Article  PubMed  PubMed Central  Google Scholar 

  128. Monteiro PI, Santos JS, Alvarenga Brizola VR, Pasini Deolindo CT, Koot A, Boerrigter-Eenling R, van Ruth S, Georgouli K, Koidis A, Granato D (2018) Comparison between proton transfer reaction mass spectrometry and near infrared spectroscopy for the authentication of Brazilian coffee: a preliminary chemometric study. Food Control 91:276–283

    Article  CAS  Google Scholar 

  129. Scholz MBS, Pagiatto NF, Kitzberger CSG, Pereira LFP, Davrieux F, Charmetant P, Leroy T (2014) Validation of near-infrared spectroscopy for the quantification of cafestol and kahweol in green coffee. Food Res Int 61:176–182

    Article  CAS  Google Scholar 

  130. Winkler-Moser JK, Singh M, Rennick KA, Bakota EL, Jham G, Liu SX, Vaughn SF (2015) Detection of corn adulteration in Brazilian coffee (Coffea arabica) by tocopherol profiling and Near-Infrared (NIR) Spectroscopy. J Agric Food Chem 63:10662–10668

    Article  CAS  PubMed  Google Scholar 

  131. Cebi N, Yilmaz MT, Sagdic O (2017) A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses. Food Chem 229:517–526

    Article  CAS  PubMed  Google Scholar 

  132. Moreira I, Scarminio IS (2013) Chemometric discrimination of genetically modified Coffea arabica cultivars using spectroscopic and chromatographic fingerprints. Talanta 107:416–422

    Article  CAS  PubMed  Google Scholar 

  133. Reis N, Franca AS, Oliveira LS (2013) Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics. Talanta 115:563–568

    Article  CAS  PubMed  Google Scholar 

  134. Bertone E, Venturello A, Giraudo A, Pellegrino G, Geobaldo F (2016) Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee. Food Control 59:683–689

    Article  CAS  Google Scholar 

  135. Santos JR, Lopo M, Rangel AOSS, Lopes JA (2016) Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting. Food Control 60:408–415

    Article  CAS  Google Scholar 

  136. Calvini R, Ulrici A, Amigo JM (2015) Practical comparison of sparse methods for classification of Arabica and Robusta coffee species using near infrared hyperspectral imaging. Chemom Intell Lab Syst 146:503–511

    Article  CAS  Google Scholar 

  137. Marquetti I, Link JV, Lemes ALG, Scholz MBS, Valderrama P, Bona E (2016) Partial least square with discriminant analysis and near infrared spectroscopy for evaluation of geographic and genotypic origin of arabica coffee. Comput Electron Agric 121:313–319

    Article  Google Scholar 

  138. Barbosa MSG, Scholz MBS, Kitzberger CSG, Benassi MT (2019) Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem 292:275–280

    Article  CAS  PubMed  Google Scholar 

  139. Tolessa K, Rademaker M, De Baets B, Boeckx P (2016) Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans. Talanta 150:367–374

    Article  CAS  PubMed  Google Scholar 

  140. Catelani TA, Santos JR, Páscoa RNMJ, Pezza L, Pezza HR, Lopes JA (2018) Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: a feasibility study. Talanta 179:292–299

    Article  CAS  PubMed  Google Scholar 

  141. Correia RM, Tosato F, Domingos E, Rodrigues RRT, Aquino LFM, Filgueiras PR, Lacerda V, Romão W (2018) Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta 176:59–68

    Article  CAS  PubMed  Google Scholar 

  142. Dias RCE, Valderrama P, Março PH, dos Santos Scholz MB, Edelmann M, Yeretzian C (2018) Quantitative assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Food Chem 255:132–138

    Article  CAS  PubMed  Google Scholar 

  143. Craig AP, Franca AS, Oliveira LS, Irudayaraj J, Ileleji K (2014) Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees. Talanta 128:393–400

    Article  CAS  PubMed  Google Scholar 

  144. Yisak H, Redi-Abshiro M, Chandravanshi BS (2018) Selective determination of caffeine and trigonelline in aqueous extract of green coffee beans by FT-MIR-ATR spectroscopy. Vib Spectrosc 97:33–38

    Article  CAS  Google Scholar 

  145. Assis C, Pereira HV, Amador VS, Augusti R, de Oliveira LS, Sena MM (2019) Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends. Food Chem 281:71–77

    Article  CAS  PubMed  Google Scholar 

  146. Rubayiza AB, Meurens M (2005) Chemical discrimination of Arabica and Robusta coffees by Fourier Transform Raman Spectroscopy. J Agric Food Chem 53:4654–4659

    Article  CAS  PubMed  Google Scholar 

  147. Figueiredo LP, Borém FM, Almeida MR, Oliveira LFC, Alves APC, Santos CM, Rios PA (2019) Raman spectroscopy for the differentiation of Arabic coffee genotypes. Food Chem 288:262–267

    Article  CAS  PubMed  Google Scholar 

  148. El-Abassy RM, Donfack P, Materny A (2011) Discrimination between Arabica and Robusta green coffee using visible micro Raman spectroscopy and chemometric analysis. Food Chem 126:1443–1448

    Article  CAS  Google Scholar 

  149. Keidel A, von Stetten D, Rodrigues C, Máguas C, Hildebrandt P (2010) Discrimination of green Arabica and Robusta coffee beans by Raman Spectroscopy. J Agric Food Chem 58:11187–11192

    Article  CAS  PubMed  Google Scholar 

  150. Wermelinger T, D’Ambrosio L, Klopprogge B, Yeretzian C (2011) Quantification of the Robusta fraction in a coffee blend via Raman Spectroscopy: proof of principle. J Agric Food Chem 59:9074–9079

    Article  CAS  PubMed  Google Scholar 

  151. Dias RCE, Yeretzian C (2016) Investigating coffee samples by Raman Spectroscopy for quality control: preliminary study. Int J Exp Spectrosc Tech 1:006

    Article  Google Scholar 

  152. Abreu GF, Borém FM, Oliveira LFC, Almeida MR, Alves APC (2019) Raman spectroscopy: a new strategy for monitoring the quality of green coffee beans during storage. Food Chem 287:241–248

    Article  CAS  PubMed  Google Scholar 

  153. Uryupin AB, Peregudov AS (2013) Application of NMR techniques to the determination of the composition of tobacco, coffee, and tea products. J Anal Chem 68:1021–1032

    Article  CAS  Google Scholar 

  154. Consonni R, Cagliani LR (2010) Nuclear magnetic resonance and chemometrics to assess geographical origin and quality of traditional food products. In: Taylor S L (ed) Adv Food Nutr Res 59:87–165

  155. Marcone MF, Wang S, Albabish W, Nie S, Somnarain D, Hill A (2013) Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res Int 51:729–747

    Article  CAS  Google Scholar 

  156. Madhava Naidu M, Sulochanamma G, Sampathu SR, Srinivas P (2008) Studies on extraction and antioxidant potential of green coffee. Food Chem 107:377–384

    Article  CAS  Google Scholar 

  157. Mateus M-L, Champion D, Liardon R, Voilley A (2007) Characterization of water mobility in dry and wetted roasted coffee using low-field proton nuclear magnetic resonance. J Food Eng 81:572–579

    Article  CAS  Google Scholar 

  158. Heinzmann SS, Holmes E, Kochhar S, Nicholson JK, Schmitt-Kopplin P (2015) 2-Furoylglycine as a candidate biomarker of coffee consumption. J Agric Food Chem 63:8615–8621

    Article  CAS  PubMed  Google Scholar 

  159. Sandusky PO (2017) Introducing undergraduate students to metabolomics using a NMR-based analysis of coffee beans. J Chem Educ 94:1324–1328

    Article  CAS  Google Scholar 

  160. de Moura Ribeiro MV, Boralle N, Redigolo Pezza H, Pezza L, Toci AT (2017) Authenticity of roasted coffee using 1H NMR spectroscopy. J Food Compos Anal 57:24–30

    Article  Google Scholar 

  161. Consonni R, Polla D, Cagliani LR (2018) Organic and conventional coffee differentiation by NMR spectroscopy. Food Control 94:284–288

    Article  CAS  Google Scholar 

  162. Villalón-López N, Serrano-Contreras JI, Téllez-Medina DI, Gerardo Zepeda L (2018) An 1H NMR-based metabolomic approach to compare the chemical profiling of retail samples of ground roasted and instant coffees. Food Res Int 106:263–270

    Article  PubMed  Google Scholar 

  163. Hatumura PH, de Oliveira GS, Marcheafave GG, Rakocevic M, Bruns RE, Scarminio IS, Terrile AE (2018) Chemometric analysis of 1H NMR fingerprints of Coffea arabica green bean extracts cultivated under different planting densities. Food Anal Methods 11:1906–1914

    Article  Google Scholar 

  164. Febvay L, Hamon E, Recht R, Andres N, Vincent M, Aoudé-Werner D, This H (2019) Identification of markers of thermal processing (“roasting”) in aqueous extracts of Coffea arabica L. seeds through NMR fingerprinting and chemometrics. Magn Reson Chem 57:589–602

    Article  CAS  PubMed  Google Scholar 

  165. Ciaramelli C, Palmioli A, Airoldi C (2019) Coffee variety, origin and extraction procedure: Implications for coffee beneficial effects on human health. Food Chem 278:47–55

    Article  CAS  PubMed  Google Scholar 

  166. Wei F, Furihata K, Hu F, Miyakawa T, Tanokura M (2010) Complex mixture analysis of organic compounds in green coffee bean extract by two-dimensional NMR spectroscopy. Magn Reson Chem 48:857–865

    Article  CAS  PubMed  Google Scholar 

  167. Wei F, Furihata K, Hu F, Miyakawa T, Tanokura M (2011) Two-dimensional 1H–13C nuclear magnetic resonance (NMR)-based comprehensive analysis of roasted coffee bean extract. J Agric Food Chem 59:9065–9073

    Article  CAS  PubMed  Google Scholar 

  168. Wei F, Furihata K, Koda M, Hu F, Kato R, Miyakawa T, Tanokura M (2012) 13C NMR-based metabolomics for the classification of green coffee beans according to variety and origin. J Agric Food Chem 60:10118–10125

    Article  CAS  PubMed  Google Scholar 

  169. Wei F, Furihata K, Koda M, Hu F, Miyakawa T, Tanokura M (2012) Roasting process of coffee beans as studied by nuclear magnetic resonance: time course of changes in composition. J Agric Food Chem 60:1005–1012

    Article  CAS  PubMed  Google Scholar 

  170. Wei F, Furihata K, Miyakawa T, Tanokura M (2014) A pilot study of NMR-based sensory prediction of roasted coffee bean extracts. Food Chem 152:363–369

    Article  CAS  PubMed  Google Scholar 

  171. Wei F, Tanokura M (2015) Chemical changes in the components of coffee beans during roasting. In: Preedy VR (ed) Coffee in health and disease prevention. Academic Press, Amsterdam, pp 83–91

    Chapter  Google Scholar 

  172. Wei F, Tanokura M (2015) Organic compounds in green coffee beans. In: Preedy VR (ed) Coffee in health and disease prevention. Academic Press, Amsterdam, pp 149–162

    Chapter  Google Scholar 

  173. Nogueira RF, Boffo EF, Tavares MIB, Moreira LA, Tavares LA, Ferreira AG (2011) The use of solid state NMR to Evaluate the carbohydrates in commercial coffee granules. Food Nutr Sci 02:350–355

    CAS  Google Scholar 

  174. Kanai N, Yoshihara N, Kawamura I (2019) Solid-state NMR characterization of triacylglycerol and polysaccharides in coffee beans. Biosci Biotechnol Biochem 83:803–809

    Article  CAS  PubMed  Google Scholar 

  175. Efthymiopoulos I, Hellier P, Ladommatos N, Russo-Profili A, Eveleigh A, Aliev A, Kay A, Mills-Lamptey B (2018) Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Ind Crops Prod 119:49–56

    Article  CAS  Google Scholar 

  176. Williamson K, Hatzakis E (2019) NMR analysis of roasted coffee lipids and development of a spent ground coffee application for the production of bioplastic precursors. Food Res Int 119:683–692

    Article  CAS  PubMed  Google Scholar 

  177. D’Amelio N, de Angelis E, Navarini L, Schievano E, Mammi S (2013) Green coffee oil analysis by high-resolution nuclear magnetic resonance spectroscopy. Talanta 110:118–127

    Article  PubMed  Google Scholar 

  178. Guercia E, Berti F, Navarini L, Demitri N, Forzato C (2016) Isolation and characterization of major diterpenes from C. canephora roasted coffee oil. Tetrahedron Asymm 27:649–656

  179. Finotello C, Forzato C, Gasparini A, Mammi S, Navarini L, Schievano E (2017) NMR quantification of 16-O-methylcafestol and kahweol in Coffea canephora var. robusta beans from different geographical origins. Food Control 75:62–69

    Article  CAS  Google Scholar 

  180. Defernez M, Wren E, Watson AD, Gunning Y, Colquhoun IJ, Le Gall G, Williamson D, Kemsley EK (2017) Low-field 1H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees. Food Chem 216:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gunning Y, Defernez M, Watson AD, Beadman N, Colquhoun IJ, Le Gall G, Philo M, Garwood H, Williamson D, Davis AP, Kemsley EK (2018) 16-O-methylcafestol is present in ground roast Arabica coffees: Implications for authenticity testing. Food Chem 248:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kreppenhofer S, Frank O, Hofmann T (2011) Identification of (furan-2-yl)methylated benzene diols and triols as a novel class of bitter compounds in roasted coffee. Food Chem 126:441–449

    Article  CAS  Google Scholar 

  183. Deotale SM, Dutta S, Moses JA, Anandharamakrishnan C (2019) Coffee oil as a natural surfactant. Food Chem 295:180–188

    Article  CAS  PubMed  Google Scholar 

  184. Badmos S, Lee S-H, Kuhnert N (2019) Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans. Food Res Int 126:108544

    Article  CAS  PubMed  Google Scholar 

  185. Amigoni L, Stuknytė M, Ciaramelli C, Magoni C, Bruni I, de Noni I, Airoldi C, Regonesi ME, Palmioli A (2017) Green coffee extract enhances oxidative stress resistance and delays aging in Caenorhabditis elegans. J Funct Foods 33:297–306

    Article  CAS  Google Scholar 

  186. Wongsa P, Khampa N, Horadee S, Chaiwarith J, Rattanapanone N (2019) Quality and bioactive compounds of blends of Arabica and Robusta spray-dried coffee. Food Chem 283:579–587

    Article  CAS  PubMed  Google Scholar 

  187. Low JH, Rahman WAWA, Jamaluddin J (2015) Structural elucidation of tannins of spent coffee grounds by CP-MAS 13C NMR and MALDI-TOF MS. Ind Crops Prod 69:456–461

    Article  CAS  Google Scholar 

  188. Park JB (2017) NMR confirmation and HPLC quantification of Javamide-I and Javamide-II in green coffee extract products available in the market. Int J Anal Chem 2017:1927983

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ciaramelli C, Palmioli A, de Luigi A, Colombo L, Sala G, Riva C, Zoia CP, Salmona M, Airoldi C (2018) NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts. Food Chem 252:171–180

    Article  CAS  PubMed  Google Scholar 

  190. Wang X, Meng Q, Peng X, Hu G, Qiu M (2018) Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities. Food Chem 263:251–257

    Article  CAS  PubMed  Google Scholar 

  191. Capek P, Matulová M, Navarini L, Suggi-Liverani F (2009) A comparative study of arabinogalactan-protein isolates from instant coffee powder of Coffea arabica beans. J food Nutr Res 48:80–86

    CAS  Google Scholar 

  192. Capek P, Matulová M, Navarini L, Suggi-Liverani F (2010) Structural features of an arabinogalactan-protein isolated from instant coffee powder of Coffea arabica beans. Carbohydr Polym 80:180–185

    Article  CAS  Google Scholar 

  193. Capek P, Matulová M, Navarini L, Suggi-Liverani F (2013) Molecular heterogeneity of arabinogalactan-protein from Coffea arabica instant coffee. Int J Biol Macromol 59:402–407

    Article  CAS  PubMed  Google Scholar 

  194. Capek P, Paulovičová E, Matulová M, Mislovičová D, Navarini L, Suggi-Liverani F (2014) Coffea arabica instant coffee — Chemical view and immunomodulating properties. Carbohydr Polym 103:418–426

    Article  CAS  PubMed  Google Scholar 

  195. Matulová M, Capek P, Kaneko S, Navarini L, Suggi-Liverani F (2011) Structure of arabinogalactan oligosaccharides derived from arabinogalactan-protein of Coffea arabica instant coffee powder. Carbohydr Res 346:1029–1036

    Article  PubMed  Google Scholar 

  196. de Carvalho OF, Srinivas K, Helms GL, Isern NG, Cort JR, Gonçalves AR, Ahring BK (2018) Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresour Technol 257:172–180

    Article  Google Scholar 

  197. Tolesa LD, Gupta BS, Lee M-J (2018) Treatment of coffee husk with ammonium-based ionic liquids: lignin extraction, degradation, and characterization. ACS Omega 3:10866–10876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Deshpande S, El-Abassy RM, Jaiswal R, Eravuchira P, von der Kammer B, Materny A, Kuhnert N (2014) Which spectroscopic technique allows the best differentiation of coffee varieties: comparing principal component analysis using data derived from CD-, NMR- and IR-spectroscopies and LC-MS in the analysis of the chlorogenic acid fraction in green coffee be. Anal Methods 6:3268–3276

    Article  CAS  Google Scholar 

  199. Belay A, Ture K, Redi M, Asfaw A (2008) Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chem 108:310–315

    Article  CAS  Google Scholar 

  200. Souto UTCP, Ferreira Barbosa M, Vieira Dantas H, Pontes AS, Silva Lyra W, Dias Diniz PHG, Araújo MCU, Silva EC (2015) Identification of adulteration in ground roasted coffees using UV-Vis spectroscopy and SPA-LDA. LWT Food Sci Technol 63:1037–1041

    Article  CAS  Google Scholar 

  201. Hečimović I, Belščak-Cvitanović A, Horžić D, Komes D (2011) Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem 129:991–1000

    Article  PubMed  Google Scholar 

  202. Navarra G, Moschetti M, Guarrasi V, Mangione MR, Militello V, Leone M (2017) Simultaneous determination of caffeine and chlorogenic acids in green coffee by UV/Vis Spectroscopy. J Chem 2017:6435086

    Article  Google Scholar 

  203. Hagos M, Redi-Abshiro M, Chandravanshi B, Ele E, Mohammed A, Mamo H (2018) Correlation between caffeine contents of green coffee beans and altitudes of the coffee plants grown in southwest Ethiopia. Bull Chem Soc Ethiop 32:13–25

    Article  CAS  Google Scholar 

  204. Terrile AE, Marcheafave GG, Oliveira GS, Rakocevic M, Bruns RE, Scarminio IS (2016) Chemometric analysis of UV characteristic profile and infrared fingerprint variations of Coffea arabica Green beans under different space management treatments. J Braz Chem Soc 27:1254–1263

    CAS  Google Scholar 

  205. Dankowska A, Domagała A, Kowalewski W (2017) Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV–Vis spectroscopies. Talanta 172:215–220

    Article  CAS  PubMed  Google Scholar 

  206. Welna M, Szymczycha-Madeja A, Zyrnicki W (2013) Applicability of ICP-OES, UV-VIS, and FT-IR methods for the analysis of coffee products. Anal Lett 46:2927–2940

    Article  CAS  Google Scholar 

  207. Liu H-C, You C-F, Chen C-Y, Liu Y-C, Chung M-T (2014) Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium. Food Chem 142:439–445

    Article  CAS  PubMed  Google Scholar 

  208. Anderson KA, Smith BW (2002) Chemical profiling to differentiate geographic growing origins of coffee. J Agric Food Chem 50:2068–2075

    Article  CAS  PubMed  Google Scholar 

  209. Oliveira M, Ramos S, Delerue-Matos C, Morais S (2015) Espresso beverages of pure origin coffee: mineral characterization, contribution for mineral intake and geographical discrimination. Food Chem 177:330–338

    Article  CAS  PubMed  Google Scholar 

  210. Senesi GS, Cabral J, Menegatti CR, Marangoni B, Nicolodelli G (2019) Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: an overview of developments in the last decade (2010–2019). Part II. Crop plants and their food derivatives. TrAC Trends Anal Chem 118:453–469

    Article  CAS  Google Scholar 

  211. Díaz Guerrero AM, Ponce Cabrera LV, Flores Reyes T, Ortega Izaguirre R (2017) Laser-Induced breakdown spectroscopy (LIBS) applied in the differentiation of Arabica and Robusta coffee. Opt Photonics J 07:181–195

    Article  Google Scholar 

  212. Silva TV, Milori DMBP, Neto JAG, Ferreira EJ, Ferreira EC (2019) Prediction of black, immature and sour defective beans in coffee blends by using laser-induced breakdown spectroscopy. Food Chem 278:223–227

    Article  CAS  PubMed  Google Scholar 

  213. Ganash E, Alrabghi R, Mangl S, Altuwirqi R, Alsufiani H, Omar U (2019) Semi-quantitative analysis of mineral composition in harari coffee with herbal additives by using laser-induced breakdown spectroscopy. Laser Phys 29:025701

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq) [Grant Number 442793/2014–6], the Bahia State Research Support Foundation (FAPESB), Coordination for the Improvement of Higher Education Personnel (CAPES), and Brazilian Innovation Agency (FINEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisangela F. Boffo.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, H.D., Boffo, E.F. Coffee beyond the cup: analytical techniques used in chemical composition research—a review. Eur Food Res Technol 247, 749–775 (2021). https://doi.org/10.1007/s00217-020-03679-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03679-6

Keywords

Navigation