Skip to main content
Log in

Characterization of Cabernet Sauvignon wines from California: determination of origin based on ICP-MS analysis and machine learning techniques

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this paper, samples of Cabernet Sauvignon wines produced in California have been analyzed on the basis of their elemental content and classified according to its geographical origin by the use of machine learning. Overall, 13 metals (Al, Cd, Co, Cr, Cu, Li, Mn, Ni, P, Pb, Rb, Sr, and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). We used two algorithms of variable selection in order to estimate the relevance of each metal to classification. Predictive models based on chemometric tools and machine learning algorithms were developed to differentiate origin of wine samples. Li and Sr were identified as the main responsible for the differentiation of samples. The application of Random Forest permitted to correctly classify all samples. A second analysis was performed by removing the variables Li and Sr to investigate the relevance of the others metals. We found that a group of seven variables (Cd, Ni, Mn, Pb, Rb, Co, Cu) which were able to discriminate the wines in 89% of accuracy by using Support Vector Machines. Results suggested that the developed methodology by advanced machine learning techniques is robust and reliable for the geographical classification of wine samples, and the study of the elements that characterize the regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Versari A, Laurie VF, Ricci A, Laghi L, Parpinello GP (2014) Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res Int 60:2–18. https://doi.org/10.1016/j.foodres.2014.02.007

    Article  CAS  Google Scholar 

  2. Luykx DMAM, van Ruth SM (2008) An overview of analytical methods for determining the geographical origin of food products. Food Chem 107:897–911. https://doi.org/10.1016/j.foodchem.2007.09.038

    Article  CAS  Google Scholar 

  3. I.O. of V. and Wine, State of the Vitiviniculture World Market (2019) https://www.oiv.int/public/medias/6679/en-oiv-state-of-the-vitiviniculture-world-market-2019.pdf. Accessed 1 Aug 2019

  4. Hira A, Swartz T (2014) What makes Napa Napa? The roots of success in the wine industry. Wine Econ Policy 3:37–53. https://doi.org/10.1016/j.wep.2014.02.001

    Article  Google Scholar 

  5. Umali AP, Ghanem E, Hopfer H, Hussain A, Kao YT, Zabanal LG, Wilkins BJ, Hobza C, Quach DK, Fredell M, Heymann H, Anslyn EV (2015) Grape and wine sensory attributes correlate with pattern-based discrimination of Cabernet Sauvignon wines by a peptidic sensor array. Tetrahedron 71:3095–3099. https://doi.org/10.1016/j.tet.2014.09.062

    Article  CAS  Google Scholar 

  6. Hopfer H, Nelson J, Collins TS, Heymann H, Ebeler SE (2015) The combined impact of vineyard origin and processing winery on the elemental profile of red wines. Food Chem 172:486–496. https://doi.org/10.1016/j.foodchem.2014.09.113

    Article  CAS  PubMed  Google Scholar 

  7. Fabani MP, Arrúa RC, Vázquez F, Diaz MP, Baroni MV, Wunderlin DA (2010) Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chem 119:372–379. https://doi.org/10.1016/j.foodchem.2009.05.085

    Article  CAS  Google Scholar 

  8. Soares F, Anzanello MJ, Fogliatto FS, Marcelo MCA, Ferrão MF, Manfroi V, Pozebon D (2018) Element selection and concentration analysis for classifying South America wine samples according to the country of origin. Comput Electron Agric 150:33–40. https://doi.org/10.1016/j.compag.2018.03.027

    Article  Google Scholar 

  9. Šelih VS, Šala M, Drgan V (2014) Multi-element analysis of wines by ICP-MS and ICP-OES and their classification according to geographical origin in Slovenia. Food Chem 153:414–423. https://doi.org/10.1016/j.foodchem.2013.12.081

    Article  CAS  PubMed  Google Scholar 

  10. Orellana S, Johansen AM, Gazis C (2019) Geographic classification of US Washington State wines using elemental and water isotope composition. Food Chem 1:100007. https://doi.org/10.1016/j.fochx.2019.100007

    Article  Google Scholar 

  11. Geana EI, Popescu R, Costinel D, Dinca OR, Ionete RE, Stefanescu I, Artem V, Bala C (2016) Classification of red wines using suitable markers coupled with multivariate statistic analysis. Food Chem 192:1015–1024. https://doi.org/10.1016/j.foodchem.2015.07.112

    Article  CAS  PubMed  Google Scholar 

  12. Šperková J, Suchánek M (2005) Multivariate classification of wines from different Bohemian regions (Czech Republic). Food Chem 93:659–663. https://doi.org/10.1016/j.foodchem.2004.10.044

    Article  CAS  Google Scholar 

  13. da Costa NL, Castro IA, Barbosa R (2016) Classification of Cabernet Sauvignon from two different countries in South America by chemical compounds and support vector machines. Appl Artif Intell 30:679–689. https://doi.org/10.1080/08839514.2016.1214416

    Article  Google Scholar 

  14. Urvieta R, Buscema F, Bottini R, Coste B, Fontana A (2018) Phenolic and sensory profiles discriminate geographical indications for Malbec wines from different regions of Mendoza, Argentina. Food Chem 265:120–127. https://doi.org/10.1016/j.foodchem.2018.05.083

    Article  CAS  PubMed  Google Scholar 

  15. Cozzolino D, Cynkar WU, Shah N, Smith PA (2011) Can spectroscopy geographically classify Sauvignon Blanc wines from Australia and New Zealand? Food Chem 126:673–678. https://doi.org/10.1016/j.foodchem.2010.11.005

    Article  CAS  Google Scholar 

  16. Brereton RG (2015) Pattern recognition in chemometrics. Chemom Intell Lab Syst 149:90–96. https://doi.org/10.1016/j.chemolab.2015.06.012

    Article  CAS  Google Scholar 

  17. Jiménez-Carvelo AM, González-Casado A, Bagur-González MG, Cuadros-Rodríguez L (2019) Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity—a review. Food Res Int. https://doi.org/10.1016/j.foodres.2019.03.063

    Article  PubMed  Google Scholar 

  18. Callao MP, Ruisánchez I (2018) An overview of multivariate qualitative methods for food fraud detection. Food Control 86:283–293. https://doi.org/10.1016/j.foodcont.2017.11.034

    Article  CAS  Google Scholar 

  19. Li H, Liang Y, Xu Q (2009) Support vector machines and its applications in chemistry. Chemom Intell Lab Syst 95:188–198. https://doi.org/10.1016/j.chemolab.2008.10.007

    Article  CAS  Google Scholar 

  20. Ríos-Reina R, Morales ML, García-González DL, Amigo JM, Callejón RM (2018) Sampling methods for the study of volatile profile of PDO wine vinegars. A comparison using multivariate data analysis. Food Res Int 105:880–896. https://doi.org/10.1016/j.foodres.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  21. Moreno J, Moreno-García J, López-Muñoz B, Mauricio JC, García-Martínez T (2016) Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine. Food Chem 213:90–97. https://doi.org/10.1016/j.foodchem.2016.06.062

    Article  CAS  PubMed  Google Scholar 

  22. Agazzi FM, Nelson J, Tanabe CK, Doyle C, Boulton RB, Buscema F (2018) Aging of Malbec wines from Mendoza and California: evolution of phenolic and elemental composition. Food Chem 269:103–110. https://doi.org/10.1016/j.foodchem.2018.06.142

    Article  CAS  PubMed  Google Scholar 

  23. Andreu-Navarro A, Russo P, Aguilar-Caballos MP, Fernández-Romero JM, Gómez-Hens A (2011) Usefulness of terbium-sensitised luminescence detection for the chemometric classification of wines by their content in phenolic compounds. Food Chem. https://doi.org/10.1016/j.foodchem.2010.08.014

    Article  Google Scholar 

  24. La Torre GL, La Pera L, Rando R, Lo Turco V, Di Bella G, Saitta M, Dugo G (2008) Classification of Marsala wines according to their polyphenol, carbohydrate and heavy metal levels using canonical discriminant analysis. Food Chem. https://doi.org/10.1016/j.foodchem.2008.02.071

    Article  Google Scholar 

  25. Martin AE, Watling RJ, Lee GS (2012) The multi-element determination and regional discrimination of Australian wines. Food Chem 133:1081–1089. https://doi.org/10.1016/j.foodchem.2012.02.013

    Article  CAS  Google Scholar 

  26. Witten I, Frank E, Hall M, Pal C (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (ISBN: 978-0-12-804291-5)

    Google Scholar 

  27. Bevilacqua M, Bucci R, Magrì AD, Magrì AL, Nescatelli R (2013) Classification and class-modelling. Data Handl Sci Technol 28:171–233. https://doi.org/10.1016/B978-0-444-59528-7.00005-3

    Article  Google Scholar 

  28. Bajoub A, Medina-Rodríguez S, Gómez-Romero M, Ajal EA, Bagur-González MG, Fernández-Gutiérrez A, Carrasco-Pancorbo A (2017) Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics. Food Chem 215:245–255. https://doi.org/10.1016/j.foodchem.2016.07.140

    Article  CAS  PubMed  Google Scholar 

  29. Ouyang Q, Zhao J, Chen Q (2013) Classification of rice wine according to different marked ages using a portable multi-electrode electronic tongue coupled with multivariate analysis. Food Res Int 51:633–640. https://doi.org/10.1016/j.foodres.2012.12.032

    Article  CAS  Google Scholar 

  30. Xue H, Yang Q, Chen S (2009) SVM: support vector machines. In: Top ten algorithms data min, pp. 37–59

  31. Jurado JM, Alcázar Á, Palacios-Morillo A, De Pablos F (2012) Classification of Spanish DO white wines according to their elemental profile by means of support vector machines. Food Chem 135:898–903. https://doi.org/10.1016/j.foodchem.2012.06.017

    Article  CAS  PubMed  Google Scholar 

  32. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  33. Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern 30:451–462. https://doi.org/10.1109/5326.897072

    Article  Google Scholar 

  34. Gómez-Meire S, Campos C, Falqué E, Díaz F, Fdez-Riverola F (2014) Assuring the authenticity of northwest Spain white wine varieties using machine learning techniques. Food Res Int 60:230–240. https://doi.org/10.1016/j.foodres.2013.09.032

    Article  CAS  Google Scholar 

  35. Costa NL, Llobodanin LAG, Castro IA, Barbosa R (2019) Using Support Vector Machines and neural networks to classify Merlot wines from South America. Inf Process Agric 6:265–278. https://doi.org/10.1016/j.inpa.2018.10.003

    Article  Google Scholar 

  36. Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40:16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  37. Chen Y-W, Lin C-J (2006) Combining SVMs with various feature selection strategies. In: Featur. extr. Springer, pp. 315–324. https://doi.org/10.1007/978-3-540-35488-8_13

  38. R Core Team (2016) R: a language and environment for statistical computing. R Found. Stat. Comput, Vienna

    Google Scholar 

  39. Kuhn M (2015) Caret: classification and regression training. Astrophys Source Code Libr

  40. Romanski P, Kotthoff L, Kotthoff ML (2018) Package Fselector: selecting attributes, repos. CRAN 18

  41. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  42. Pérez-Álvarez EP, Garcia R, Barrulas P, Dias C, Cabrita MJ, Garde-Cerdán T (2019) Classification of wines according to several factors by ICP-MS multi-element analysis. Food Chem 270:273–280. https://doi.org/10.1016/j.foodchem.2018.07.087

    Article  CAS  PubMed  Google Scholar 

  43. Geana I, Iordache A, Ionete R, Marinescu A, Ranca A, Culea M (2013) Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem 138:1125–1134. https://doi.org/10.1016/j.foodchem.2012.11.104

    Article  CAS  PubMed  Google Scholar 

  44. Yamashita GH, Anzanello MJ, Soares F, Rocha MK, Fogliatto FS, Rodrigues NP, Rodrigues E, Celso PG, Manfroi V, Hertz PF (2019) Hierarchical classification of sparkling wine samples according to the country of origin based on the most informative chemical elements. Food Control 106:106737. https://doi.org/10.1016/j.foodcont.2019.106737

    Article  CAS  Google Scholar 

  45. Villano C, Lisanti MT, Gambuti A, Vecchio R, Moio L, Frusciante L, Aversano R, Carputo D (2017) Wine varietal authentication based on phenolics, volatiles and DNA markers: state of the art, perspectives and drawbacks. Food Control 80:1–10. https://doi.org/10.1016/j.foodcont.2017.04.020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommel Barbosa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, N.L., Ximenez, J.P.B., Rodrigues, J.L. et al. Characterization of Cabernet Sauvignon wines from California: determination of origin based on ICP-MS analysis and machine learning techniques. Eur Food Res Technol 246, 1193–1205 (2020). https://doi.org/10.1007/s00217-020-03480-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03480-5

Keywords

Navigation