Skip to main content
Log in

Digestibility, antioxidative activity and stability of plant protein-rich products after processing and formulation with polyphenol-rich juices: kale and kale–strawberry as a model

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Protein–polyphenol interactions can possibly be affected by processing and modifying the product stability, the digestive fate and stability during shelf-life of proteins and polyphenols. In this study, the combined effects of the addition of a polyphenol-rich matrix (strawberry) and the preservation technology (thermal, PEF, HPP) on kale juice (K), as model for a protein-rich vegetable juice, on the techno-functional and antioxidant properties were investigated before and during in vitro digestion. While the different processing did not affect the protein and physical stability of kale juice, combination with strawberry (KS) strongly reduced protein solubility and physical stability, likely due to the protein–polyphenol interactions in a processing-dependent manner. Kale proteins were easily digestible with full digestion within 30 min gastric phase. During digestion, the antioxidant capacity of K and KS increased, likely indicative of the release of soluble, antioxidative compounds, yet it was not significantly influenced by different preservation treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nunes MA, Costa ASG, Barreira JCM, Vinha AF, Alves RC, Rocha A, Oliveira MBPP (2016) How functional foods endure throughout the shelf storage? Effects of packing materials and formulation on the quality parameters and bioactivity of smoothies. LWT Food Sci Technol 65:70–78

    Article  CAS  Google Scholar 

  2. Das D, Vimala R, Das N (2010) Functional foods of natural origin—an overview. Indian J Nat Prod Resour 1:136–142

    CAS  Google Scholar 

  3. Morales-de la Peña M, Welti-Chanes J, Martín-Belloso O (2016) Application of novel processing methods for greater retention of functional compounds in fruit-based beverages. Beverages 2:14

    Article  CAS  Google Scholar 

  4. Rosa E, Heaney R (1996) Seasonal variation in protein, mineral and glucosinolate composition of Portuguese cabbages and kale. Anim Feed Sci Technol 57:111–127

    Article  CAS  Google Scholar 

  5. Vilar M, Cartea ME, Padilla G, Soengas P, Velasco P (2008) The potential of kales as a promising vegetable crop. Euphytica 159:153–165

    Article  Google Scholar 

  6. Vierhile T (2014) Soups and sides get creative. Prepared Foods 59–65

  7. Kris-Etherton P, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71S–88S

    Article  CAS  PubMed  Google Scholar 

  8. Wang LI, Giovannucci EL, Hunter D, Neuberg D, Su L, Christiani DC (2004) Dietary intake of Cruciferous vegetables, Glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 15:977–985

    Article  PubMed  Google Scholar 

  9. Verhoeven DTH, Goldbohm RA, Van Poppel G, Verhagen H (1996) Epidemiological studies on brassica vegetables and cancer epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomark Prev 5:733–748

    CAS  Google Scholar 

  10. Anitha T, Divya dharsini R (2014) Studies on invitro antioxidant properties of Brassica vegetables. Int J Pharm, Chem Biol Sci 4:1061–1065

    Google Scholar 

  11. Podsedek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT Food Sci Technol 40:1–11

    Article  CAS  Google Scholar 

  12. Lin LZ, Harnly JM (2009) Identification of the phenolic components of collard greens, kale, and chinese broccoli. J Agric Food Chem 57:7401–7408

    Article  CAS  PubMed  Google Scholar 

  13. Ayaz FA, Glew RH, Millson M, Huang HS, Chuang LT, Sanz C, Hayirlioglu-Ayaz S (2006) Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chem 96:572–579

    Article  CAS  Google Scholar 

  14. Korus A (2012) Effect of technological processing and preservation method on amino acid content and protein quality in kale (Brassica oleracea L. Var. acephala) leaves. J Sci Food Agric 92:618–625

    Article  CAS  PubMed  Google Scholar 

  15. Korus A (2014) Amino acid retention and protein quality in dried kale (Brassica oleracea L. Var. acephala). J Food Process Preserv 38:676–683

    Article  CAS  Google Scholar 

  16. Lisiewska Z, Kmiecik W, Korus A (2008) The amino acid composition of kale (Brassica oleracea L. var. acephala), fresh and after culinary and technological processing. Food Chem 108:642–648

    Article  CAS  PubMed  Google Scholar 

  17. Hettiarachchy N, Kannan A, Schäfer C, Wagner G (2013) Gelling of plant based proteins. Product design and engineering

  18. Kurilich AC, Tsau GJ, Brown A, Howard L, Klein BP, Jeffery EH, Kushad M, Wallig MA, Juvik JA (1999) Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J Agric Food Chem 47:1576–1581

    Article  CAS  PubMed  Google Scholar 

  19. Korus A (2011) Level of vitamin C, polyphenols, and antioxidant and enzymatic activity in three varieties of kale (Brassica oleracea L. var. acephala) at different stages of maturity. Int J Food Prop 14:1069–1080

    Article  CAS  Google Scholar 

  20. Schmidt S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A (2010) Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun Mass Spectrom 24:2009–2022

    Article  CAS  PubMed  Google Scholar 

  21. Sikora E, Cieslik E, Leszczynska T, Filipiak-Forkiewicz A, Pisulewski PM (2008) The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chem 107:55–59

    Article  CAS  Google Scholar 

  22. Kapusta-Duch J, Kusznierewicz B, Leszczynska T, Borczak B (2016) Effect of culinary treatment on changes in the contents of selected nutrients and non-nutrients in curly kale (Brassica oleracea var. acephala). J Food Process Preserv 40:1280–1288

    Article  CAS  Google Scholar 

  23. Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Natural Product Reports 21:425–447

    Article  CAS  PubMed  Google Scholar 

  24. Prestera T, Zhang Y, Spencer SR, Wilczak CA, Talalay P (1993) The electrophile counterattack response: protection against neoplasia and toxicity. Adv Enzyme Regul 33:281–296

    Article  CAS  PubMed  Google Scholar 

  25. Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates—a review. LWT Food Sci Technol 42:1561–1572

    Article  CAS  Google Scholar 

  26. Sánchez-Moreno C, De Ancos B, Plaza L, Elez-Martínez P, Cano MP (2009) Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Crit Rev 49:552–579

    Google Scholar 

  27. Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M (2012) The strawberry: composition, nutritional quality, and impact on human health. Nutrition 28:9–19

    Article  CAS  PubMed  Google Scholar 

  28. Forbes-Hernandez TY, Gasparrini M, Afrin S, Bompadre S, Mezzetti B, Quiles JL, Giampieri F, Battino M (2016) The healthy effects of strawberry polyphenols: which strategy behind antioxidant capacity? Crit Rev Food Sci Nutr 56:S46–S59

    Article  CAS  PubMed  Google Scholar 

  29. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2018) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  Google Scholar 

  30. Siebert KJ, Troukhanova NV, Lynn PY (1996) Nature of polyphenol–protein interactions. J Agric Food Chem 44:80–85

    Article  CAS  Google Scholar 

  31. Shpigelman A, Israeli G, Livney YD (2010) Thermally-induced protein-polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocoll 24:735–743

    Article  CAS  Google Scholar 

  32. Shpigelman A, Shoham Y, Israeli-Lev G, Livney YD (2014) β-Lactoglobulin-naringenin complexes: nano-vehicles for the delivery of a hydrophobic nutraceutical. Food Hydrocoll 40:214–224

    Article  CAS  Google Scholar 

  33. Shpigelman A, Cohen Y, Livney YD (2012) Thermally-induced β-lactoglobulin-EGCG nanovehicles: loading, stability, sensory and digestive-release study. Food Hydrocoll 29:57–67

    Article  CAS  Google Scholar 

  34. Devlieghere F, Vermeiren L, Debevere J (2004) New preservation technologies: possibilities and limitations. Int Dairy J 14:273–285

    Article  Google Scholar 

  35. Rodríguez-Roque MJ, De Ancos B, Sánchez-Moreno C, Cano MP, Elez-Martínez P, Martín-Belloso O (2015) Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J Funct Foods 14:33–43

    Article  CAS  Google Scholar 

  36. Aganovic K, Grauwet T, Kebede BT, Toepfl S, Heinz V, Hendrickx M, Van Loey A (2014) Impact of different large scale pasteurisation technologies and refrigerated storage on the headspace fingerprint of tomato juice. Innovat Food Sci Emerg Technol 26:431–444

    Article  CAS  Google Scholar 

  37. Aganovic K, Grauwet T, Siemer C, Toepfl S, Heinz V, Hendrickx M, Van Loey A (2016) Headspace fingerprinting and sensory evaluation to discriminate between traditional and alternative pasteurization of watermelon juice. Eur Food Res Technol 242:787–803

    Article  CAS  Google Scholar 

  38. Sánchez-Moreno C, De Ancos B, Plaza L, Elez-Martinez P, Cano MP (2009) Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Crit Rev Food Sci Nutr 49:552–576

    Article  CAS  PubMed  Google Scholar 

  39. Alvarez-Jubete L, Valverde J, Patras A, Mullen AM, Marcos B (2014) Assessing the impact of high-pressure processing on selected physical and biochemical attributes of white cabbage (Brassica oleracea L. var. capitata alba). Food Bioprocess Technol 7:682–692

    Article  CAS  Google Scholar 

  40. Wang F, Du B, Cui Z-W, Xu L-P, Li C-Y (2016) Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. Food Sci Technol Int 23:119–127

    Article  CAS  PubMed  Google Scholar 

  41. Elez-Martínez P, Martín-Belloso O (2007) Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chem 102:201–209

    Article  CAS  Google Scholar 

  42. Zhao W, Yang R, Wang M, Lu R (2009) Effects of pulsed electric fields on bioactive components, colour and flavour of green tea infusions. Int J Food Sci Technol 44:312–321

    Article  CAS  Google Scholar 

  43. Sánchez-Moreno C, Plaza L, Elez-Martinez P, De Ancos B, Martín-Belloso O, Cano MP (2005) Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. J Agric Food Chem 53:4403–4409

    Article  CAS  PubMed  Google Scholar 

  44. Barba FJ, Koubaa M, do Prado-Silva L, Orlien V, de Souza Sant’Ana A (2017) Mild processing applied to the inactivation of the main foodborne bacterial pathogens: a review. Trends Food Sci Technol 66:20–23

    Article  CAS  Google Scholar 

  45. Timmermans RAH, Mastwijk HC, Knol JJ, Quataert MCJ, Vervoort L, Van Der Plancken I, Hendrickx ME, Matser AM (2011) Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: impact on overall quality attributes. Innovat Food Sci Emerg Technol 12:235–243

    Article  Google Scholar 

  46. Vervoort L, Van Der Plancken I, Grauwet T, Timmermans RAH, Mastwijk HC, Matser AM, Hendrickx ME, Van Loey A (2011) Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice Part II: impact on specific chemical and biochemical quality parameters. Innovat Food Sci Emerg Technol 12:466–477

    Article  CAS  Google Scholar 

  47. Zhong K, Hu X, Zhao G, Chen F, Liao X (2005) Inactivation and conformational change of horseradish peroxidase induced by pulsed electric field. Food Chem 92:473–479

    Article  CAS  Google Scholar 

  48. Li Y, Chen Z, Mo H (2007) Effects of pulsed electric fields on physicochemical properties of soybean protein isolates. LWT Food Sci Technol 40:1167–1175

    Article  CAS  Google Scholar 

  49. Li Y (2012) Structure Changes of Soybean Protein Isolates by Pulsed Electric Fields. Physics Procedia 33:132–137

    Article  CAS  Google Scholar 

  50. Marsellés-Fontanet ÁR, Puig-Pujol A, Olmos P, Mínguez-Sanz S, Martín-Belloso O (2013) A comparison of the effects of pulsed electric field and thermal treatments on grape juice. Food Bioprocess Technol 6:978–987

    Article  CAS  Google Scholar 

  51. Galazka VB, Dickinson E, Ledward DA (2000) Influence of high pressure processing on protein solutions and emulsions. Curr Opin Colloid Interface Sci 5:182–187

    Article  CAS  Google Scholar 

  52. Chapleau N, de Lamballerie-Anton M (2003) Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation. Food Hydrocoll 17:273–280

    Article  CAS  Google Scholar 

  53. Heremans K, Smeller L (1998) Protein structure and dynamics at high pressure. Biochem Biophys Acta 1386:353–370

    CAS  PubMed  Google Scholar 

  54. Funtenberger S, Dumay E, Cheftel JC (1997) High pressure promotes β-lactoglobulin aggregation through SH/S-S interchange reactions. J Agric Food Chem 45:912–921

    Article  CAS  Google Scholar 

  55. Smeller L, Rubens P, Heremans K (1999) Pressure effect on the temperature-induced unfolding and tendency to aggregate of myoglobin. Biochemistry 38:3816–3820

    Article  CAS  PubMed  Google Scholar 

  56. Liu Q, Wang R-F, Zhang B-B, Zhao X-Y, Wang D, Zhang C (2015) Protein secondary structure changes of watermelon juice treated with high hydrostatic pressure by FTIR specroscopy. J Food Process Eng 37:543–549

    Article  CAS  Google Scholar 

  57. Okunuki H, Teshima R, Shigeta T, Sakushima J, Akiyama H, Goda Y, Toyoda M, Sawada J (2002) Increased digestibility of two products in genetically modified food (CP4-EPSPS and Cry1Ab) after preheating. J Food Hygienic Soc Jpn (Shokuhin Eiseigaku Zasshi) 43:68–73

    Article  CAS  Google Scholar 

  58. Takagi K, Teshima R, Okunuki H, Sawada J, Akagi KT, Eshima RT, Kunuki HO, Awada JS (2003) Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biol Pharm Bull 26:969–973

    Article  CAS  PubMed  Google Scholar 

  59. Liener IE, Thompson RM (1980) In vitro and in vivo studies on the digestibility of the major storage protein of the navy bean (Phaseolus vulgaris). Qualitas Plantarum Plant Foods Hum Nutr 30:13–25

    Article  CAS  Google Scholar 

  60. Su D, Li S, Laurie HM, Zhao F, Zhang L, Zhao X, Liu W, Cao Y (2010) Effects of High Hydrostatic Pressure on in vitro digestion of soy protein. Int Agric Eng J 19:49–58

    Google Scholar 

  61. Zeece M, Huppertz T, Kelly A (2008) Effect of high-pressure treatment on in vitro digestibility of β-lactoglobulin. Innovat Food Sci Emerg Technol 9:62–69

    Article  CAS  Google Scholar 

  62. Garcia-Mora P, Peñas E, Frias J, Gomez R, Martinez-Villaluenga C (2015) High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chem 171:224–232

    Article  CAS  PubMed  Google Scholar 

  63. Minekus M et al (2014) A standardised static in vitro digestion method suitable for food—an international consensus. Food Funct. 5:1113–1124

    Article  CAS  PubMed  Google Scholar 

  64. Shani-Levi C, Levi-Tal S, Lesmes U (2013) Comparative performance of milk proteins and their emulsions under dynamic in vitro adult and infant gastric digestion. Food Hydrocoll 32:349–357

    Article  CAS  Google Scholar 

  65. Parniakov O, Barba FJ, Grimi N, Lebovka N, Vorobiev E (2016) Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chem 192:842–848

    Article  CAS  PubMed  Google Scholar 

  66. Grimi N, Mamouni F, Lebovka N, Vorobiev E, Vaxelaire J (2011) Impact of apple processing modes on extracted juice quality: pressing assisted by pulsed electric fields. J Food Eng 103:52–61

    Article  CAS  Google Scholar 

  67. Lerche D, Sobisch T (2007) Consolidation of concentrated dispersions of nano- and microparticles determined by analytical centrifugation. Powder Technol 174:46–49

    Article  CAS  Google Scholar 

  68. Gustin GM (1960) A simple, rapid automatic micro-Dumas apparatus for nitrogen determination. Microchem J 4:43–54

    Article  CAS  Google Scholar 

  69. Simonne AH, Simonne EH, Eitenmiller RR, Mills HA, Cresman CP III (1997) Could the Dumas method replace the kjeldahl digestion for nitrogen and crude protein. J Sci Food Agric 73:39–45

    Article  CAS  Google Scholar 

  70. Shpigelman A, Kyomugasho C, Christiaens S, Van Loey AM, Hendrickx ME (2014) Thermal and high pressure high temperature processes result in distinctly different pectin non-enzymatic conversions. Food Hydrocoll Elsevier Ltd 39:251–263

    Article  CAS  Google Scholar 

  71. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  72. Shani-Levi C, Goldstein N, Portmann R, Lesmes U (2017) Emulsion and protein degradation in the elderly: qualitative insights from a study coupling a dynamic in vitro digestion model with proteomic analyses. Food Hydrocoll 69:393–401

    Article  CAS  Google Scholar 

  73. David-Birman T, Raften G, Lesmes U (2018) Effects of thermal treatments on the colloidal properties, antioxidant capacity and in vitro proteolytic degradation of cricket flour. Food Hydrocoll 79:48–54

    Article  CAS  Google Scholar 

  74. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444

    Article  CAS  PubMed  Google Scholar 

  75. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  76. Sharma SK, Zhang QH, Chism GW (1998) Development of a protein fortified fruit beverage and its quality when processed with pulsed electric field treatment. J Food Qual 21:459–473

    Article  Google Scholar 

  77. Dhakal S, Giusti MM, Balasubramaniam VM (2016) Effect of high pressure processing on dispersive and aggregative properties of almond milk. J Sci Food Agric 96:3821–3830

    Article  CAS  PubMed  Google Scholar 

  78. Cadesky L, Walkling-Ribeiro M, Kriner KT, Karwe MV, Moraru CI (2017) Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates. J Dairy Sci Am Dairy Sci Assoc 100:7055–7070

    Article  CAS  Google Scholar 

  79. Ahmed J, Mulla MZ, Arfat YA (2017) Particle size, rheological and structural properties of whole wheat flour doughs as treated by high pressure. Int J Food Prop 20:1829–1842

    Article  CAS  Google Scholar 

  80. Joubran AM, Katz IH, Okun Z, Davidovich-Pinhas M, Shpigelman A (2019) The effect of pressure level and cycling in high-pressure homogenization on physicochemical, structural and functional properties of filtered and non-filtered strawberry nectar. Innovative Food Science and Emerging Technologies Published online

  81. Volden J, Bengtsson GB, Wicklund T (2009) Glucosinolates, l-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112:967–976

    Article  CAS  Google Scholar 

  82. Sánchez-Vega R, Elez-Martínez P, Martín-Belloso O (2015) Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innov Food Sci Emerg Technol 29:70–77

    Article  CAS  Google Scholar 

  83. Plaza L, Sánchez-Moreno C, Elez-Martínez P, De Ancos B, Martín-Belloso O, Cano MP (2006) Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. Eur Food Res Technol 223:487–493

    Article  CAS  Google Scholar 

  84. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008) Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. Eur Food Res Technol 228:239–248

    Article  CAS  Google Scholar 

  85. Aguilar-Rosas SF, Ballinas-Casarrubias ML, Nevarez-Moorillon GV, Martin-Belloso O, Ortega-Rivas E (2007) Thermal and pulsed electric fields pasteurization of apple juice: effects on physicochemical properties and flavour compounds. J Food Eng 83:41–46

    Article  CAS  Google Scholar 

  86. Elez-Martinez P, Soliva-Fortuny RC, Martín-Belloso O (2006) Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. Eur Food Res Technol 222:321–329

    Article  CAS  Google Scholar 

  87. Hartmann A, Patz C-D, Andlauer W, Dietrich H, Ludwig M (2008) Influence of processing on quality parameters of strawberries. J Agric Food Chem 56:9484–9489

    Article  CAS  PubMed  Google Scholar 

  88. Munialo CD, Naumovski N, Sergi D, Stewart D, Mellor DD (2019) Critical evaluation of the extrapolation of data relative to antioxidant function from the laboratory and their implications on food production and human health: a review. Int J Food Sci Technol 54:1448–1459

    Article  CAS  Google Scholar 

  89. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  90. Sánchez-Moreno C (2002) Review: methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8:121–137

    Article  Google Scholar 

  91. Moon J-K, Shibamoto T (2009) Antioxidant assays for plant and food components. J Agric Food Chem 57:1655–1666

    Article  CAS  PubMed  Google Scholar 

  92. Koutina G, Ioannidi E, Melo Nogueira BM, Ipsen R (2018) The effect of alginates on in vitro gastric digestion of particulated whey protein. Int J Dairy Technol 71:469–477

    Article  CAS  Google Scholar 

  93. Almeida D, Rosa E (1996) Protein and mineral concentration of portuguese kale (Brassica oleracea var. acephala) related to soil composition. Acta Hortic 407:269–276

    Article  CAS  Google Scholar 

  94. Asano K, Shinagawa K, Hashimoto N (1982) Characterization of haze-forming proteins of beer and their roles in chill haze formation. J Ther Am Soc Brewing Chem 40:147–154

    Article  CAS  Google Scholar 

  95. Miller RW, Van Etten CH, McGrew C, Wolff IA, Jones Q (1962) Seed meal amino acids, amino acid composition of seed meals from forty-one species of cruciferae. J Agric Food Chem 10:426–430

    Article  CAS  Google Scholar 

  96. Liang L, Tajmir-Riahi HA, Subirade M (2008) Interaction of beta-lactoglobulin with resveratrol and its biological implications. Biomacromol 9:50–56

    Article  CAS  Google Scholar 

  97. Rohn S, Rawel HM, Wollenberger U, Kroll J (2003) Enzyme activity of α-chymotrypsin after derivatization with phenolic compounds. Nahrung/Food 47:325–329

    Article  CAS  PubMed  Google Scholar 

  98. Rohn S, Rawel HM, Pietruschinski N, Kroll J (2001) In vitro inhibition of α-chymotryptic activity by phenolic compounds. J Sci Food Agric 81:1512–1521

    Article  CAS  Google Scholar 

  99. He Q, Lv Y, Yao K (2006) Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem 101:1178–1182

    Article  CAS  Google Scholar 

  100. Dufour C, Loonis M, Delosière M, Bu C, Hafnaoui N, Santé-lhoutellier V, Rémond D (2017) The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chem 240:314–322

    Article  CAS  PubMed  Google Scholar 

  101. Poncet-Legrand C, Edelmann A, Putaux JL, Cartalade D, Sarni-Manchado P, Vernhet A (2006) Poly(l-proline) interactions with flavan-3-ols units: influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocolloids 20:687–697

    Article  CAS  Google Scholar 

  102. Halliwell B, Zhao K, Whiteman M (2009) The gastrointestinal tract: a major site of antioxidant action? Free Radical reserach 33:819–830

    Article  Google Scholar 

  103. Mennah-Govela YA, Bornhorst GM (2017) Fresh-squeezed orange juice properties before and during in vitro digestion as influenced by orange variety and processing method. J Food Sci 82:2438–2447

    Article  CAS  PubMed  Google Scholar 

  104. Tagliazucchi D, Verzelloni E, Bertolini D, Conte A (2010) In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem 120:599–606

    Article  CAS  Google Scholar 

  105. He M, Zeng J, Zhai L, Liu Y, Wu H, Zhang R, Li Z, Xia E (2017) Effect of in vitro simulated gastrointestinal digestion on polyphenol and polysaccharide content and their biological activities among 22 fruit juices. Food Res Int 102:156–162

    Article  CAS  PubMed  Google Scholar 

  106. Wootton-Beard PC, Moran A, Ryan L (2011) Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Res Int 44:217–224

    Article  CAS  Google Scholar 

  107. Bouayed J, Hoffmann L, Bohn T (2011) Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: bioaccessibility and potential uptake. Food Chem 128:14–21

    Article  CAS  PubMed  Google Scholar 

  108. Cilla A, Perales S, Lagarda MJ, Barberá R, Clemente G, Farré R (2011) Influence of storage and in vitro gastrointestinal digestion on total antioxidant capacity of fruit beverages. J Food Compos Anal 24:87–94

    Article  CAS  Google Scholar 

  109. Attri S, Singh N, Singh TR, Goel G (2017) Effect of in vitro gastric and pancreatic digestion on antioxidant potential of fruit juices. Food Bioscience 17:1–6

    Article  CAS  Google Scholar 

  110. Pineda-Vadillo C et al (2016) In vitro digestion of dairy and egg products enriched with grape extracts: effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Res Int 88:284–292

    Article  CAS  Google Scholar 

  111. Mukai K, Oka W, Watanabe K, Egawa Y, Nagaoka SI, Terao J (1997) Kinetic study of free-radical-scavenging action of flavonoids in homogeneous and aqueous triton X-100 micellar solutions. J Phys Chem A 101:3746–3753

    Article  CAS  Google Scholar 

  112. Aider M, Barbana C (2011) Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity—a practical and critical review. Trends Food Sci Technol 22:21–39

    Article  CAS  Google Scholar 

  113. Carbonaro M, Maselli P, Nucara A (2015) Structural aspects of legume proteins and nutraceutical properties. Food Res Int 76:19–30

    Article  CAS  Google Scholar 

  114. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31:1949–1956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the state of Lower Saxony, Ministry of Science and Culture and the Volkswagen Foundation (VWZN3156). Additionally, it was partially supported by the Bayer Science and Education Foundation with the Otto-Bayer-Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna-Sophie Stübler or Avi Shpigelman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stübler, AS., Lesmes, U., Heinz, V. et al. Digestibility, antioxidative activity and stability of plant protein-rich products after processing and formulation with polyphenol-rich juices: kale and kale–strawberry as a model. Eur Food Res Technol 245, 2499–2514 (2019). https://doi.org/10.1007/s00217-019-03362-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-019-03362-5

Keywords

Navigation