Skip to main content
Log in

Effect of mechanically modified wheat flour on dough fermentation properties and bread quality

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The swelling properties and thus baking performance of starch strongly depend on mechanical starch modification (MSM), which can be influenced by grinding. To analyze the effect of starch influencing factors on dough fermentation properties and specific bread volume, different MSM levels were obtained using a ball mill. This treatment led to an increase in the water-holding capacity and a decrease in the β-amylase activity of the flour. Baking tests were conducted with varied starch modification levels and water additions to analyze the effect of mechanical flour modification and the resulting changes in hydration and gas formation properties of the dough on bread quality. The specific bread volume was lower with high-MSM flour than with low-MSM flour, regardless of the adapted water addition. Therefore, the effect of MSM on dough fermentation properties was examined with respect to different water additions. Despite increasing the water addition, the time of porosity (Tx) of high-MSM dough was significantly lower than that of low-MSM dough. However, the amount of gas leakage after 60 min was quite low for high-MSM dough (gas retention coefficient ~99.5 %) and thus not considered significant. By adding 58 and 83 g water 100 g−1 flour, the gas retention coefficient after 60 min was 100 %. The results also show that lower enzymatic activity with high MSM has no significant effect on the produced gas volume during fermentation. However, increasing MSM leads to a reduced dough height (Hm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiu C-W, Solarek D (2009) Modification of starches. Starch Chem Technol 3:629–655

    Google Scholar 

  2. Yu J, Wang S, Wang J, Li C, Xin Q, Huang W, Zhang Y, He Z, Wang S (2015) Effect of laboratory milling on properties of starches isolated from different flour millstreams of hard and soft wheat. Food Chem 172:504–514. doi:10.1016/j.foodchem.2014.09.070

    Article  CAS  Google Scholar 

  3. Nowakowski D, Sosulski FW, Hoover R (1986) The effect of pin and attrition milling on starch damage in hard wheat flours. Starch Stärke 38(8):253–258. doi:10.1002/star.19860380802

    Article  CAS  Google Scholar 

  4. Tran TT, Shelat KJ, Tang D, Li E, Gilbert RG, Hasjim J (2011) Milling of rice grains. The degradation on three structural levels of starch in rice flour can be independently controlled during grinding. J Agric Food Chem 59(8):3964–3973

    Article  CAS  Google Scholar 

  5. Banafa W (2004) Einfluss der Prallvermahlung und Windsichtung auf die stoffliche Zusammensetzung und Verarbeitungseigenschaften von Weizenmehlen. Technische Universität Berlin, Berlin

    Google Scholar 

  6. Barrera G, Pérez G, Ribotta P, León A (2007) Influence of damaged starch on cookie and bread-making quality. Eur Food Res Technol 225(1):1–7. doi:10.1007/s00217-006-0374-1

    Article  CAS  Google Scholar 

  7. Dhital S, Shrestha AK, Flanagan BM, Hasjim J, Gidley MJ (2011) Cryo-milling of starch granules leads to differential effects on molecular size and conformation. Carbohydr Polym 84(3):1133–1140. doi:10.1016/j.carbpol.2011.01.002

    Article  CAS  Google Scholar 

  8. Hasjim J, Li E, Dhital S (2013) Milling of rice grains: effects of starch/flour structures on gelatinization and pasting properties. Carbohydr Polym 92(1):682–690. doi:10.1016/j.carbpol.2012.09.023

    Article  CAS  Google Scholar 

  9. Charm S, Wong B (1970) Enzyme inactivation with shearing. Biotechnol Bioeng 12(6):1103–1109

    Article  CAS  Google Scholar 

  10. Abebe W, Collar C, Ronda F (2015) Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours. Carbohydr Polym 115:260–268. doi:10.1016/j.carbpol.2014.08.080

    Article  CAS  Google Scholar 

  11. Berton B, Scher J, Villieras F, Hardy J (2002) Measurement of hydration capacity of wheat flour: influence of composition and physical characteristics. Powder Technol 128(2–3):326–331. doi:10.1016/S0032-5910(02)00168-7

    Article  CAS  Google Scholar 

  12. Barrera GN, Bustos MC, Iturriaga L, Flores SK, León AE, Ribotta PD (2013) Effect of damaged starch on the rheological properties of wheat starch suspensions. J Food Eng 116(1):233–239. doi:10.1016/j.jfoodeng.2012.11.020

    Article  CAS  Google Scholar 

  13. Li E, Dhital S, Hasjim J (2014) Effects of grain milling on starch structures and flour/starch properties. Starch Stärke 66(1–2):15–27. doi:10.1002/star.201200224

    Article  CAS  Google Scholar 

  14. Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem 67(6):551–557

    CAS  Google Scholar 

  15. Jekle M, Becker T (2011) Dough microstructure: novel analysis by quantification using confocal laser scanning microscopy. Food Res Int 44(4):984–991. doi:10.1016/j.foodres.2011.02.036

    Article  Google Scholar 

  16. Dhital S, Shrestha AK, Gidley MJ (2010) Effect of cryo-milling on starches: functionality and digestibility. Food Hydrocoll 24(2–3):152–163. doi:10.1016/j.foodhyd.2009.08.013

    Article  CAS  Google Scholar 

  17. McCleary BV, Sheehan H (1987) Measurement of cereal α-amylase: a new assay procedure. J Cereal Sci 6(3):237–251. doi:10.1016/S0733-5210(87)80061-9

    Article  CAS  Google Scholar 

  18. van der Veen ME, Van Iersel DG, van der Goot AJ, Boom RM (2004) Shear-induced inactivation of α-amylase in a plain shear field. Biotechnol Prog 20(4):1140–1145. doi:10.1021/bp049976w

    Article  Google Scholar 

  19. Ganesh K, Joshi JB, Sawant SB (2000) Cellulase deactivation in a stirred reactor. Biochem Eng J 4(2):137–141. doi:10.1016/S1369-703X(99)00045-5

    Article  CAS  Google Scholar 

  20. Gunjikar TP, Sawant SB, Joshi JB (2001) Shear deactivation of cellulase, exoglucanase, endoglucanase, and β-glucosidase in a mechanically agitated reactor. Biotechnol Prog 17(6):1166–1168

    Article  CAS  Google Scholar 

  21. Kaya F, Heitmann JA, Joyce T (1996) Deactivation of cellulase and hemicellulase in high shear fields. Cellul Chem Tech 30 (1–2):49–56

  22. Torley PJ, van der Molen F (2005) Gelatinization of starch in mixed sugar systems. LWT Food Sci Technol 38(7):762–771. doi:10.1016/j.lwt.2004.09.001

    Article  CAS  Google Scholar 

  23. Spies RD, Hoseney RC (1982) Effect of sugars on starch gelatinization. Cereal Chem 59(2):128–131

    Google Scholar 

Download references

Acknowledgments

The research project was supported by the German Ministry of Economics and Technology (via AIF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn). Project AIF 17718 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Jekle.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackenberg, S., Verheyen, C., Jekle, M. et al. Effect of mechanically modified wheat flour on dough fermentation properties and bread quality. Eur Food Res Technol 243, 287–296 (2017). https://doi.org/10.1007/s00217-016-2743-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2743-8

Keywords

Navigation