Skip to main content
Log in

The role of spontaneous fermentation for the production of cachaça: a study of case

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Artisanal cachaças are traditionally produced from spontaneous fermentation from sugarcane must in Brazil. The microbiological traits of such processes are still poorly understood, and this work aimed to assess the microbial population dynamics during one fermentation—a study of case—for the production of cachaça, as well as to correlate the chemical, and sensory profiles of the distillate. One fermentation was carried out by gradually increasing sugarcane must concentration, and the microbial communities were assessed by plating on selective and differential media. Distillation was performed in a simple copper pot still, and the distillate fractions analyzed by gas chromatograph. Acetic and lactic bacteria took part during the whole process, and the yeasts Meyerozyma guilliermondii, Pichia fermentans and Hanseniaspora guilliermondii were detected throughout fermentation. Saccharomyces cerevisiae emerged along the process, directly competing with H. guilliermondii during tumultuous fermentation. The spirit showed low levels of acetaldehyde, ethyl acetate and acetic acid, even as no methanol and ethyl carbamate traces. The cachaça produced stood out by fruity aromas, in contrast to other similar samples from uncontrolled processes. Sugarcane fermentations are traditionally performed in batch system, implying in complex interactions of microorganisms. Microbiota diversity contributes to the organoleptic complexity, but makes a point on rigorous monitoring to ensure high quality of the product. These findings shed light on better understanding the role of microbial population dynamics in spontaneous fermentation for cachaça’s production, even as bringing new information about the microorganisms implicated and their impact on the chemical quality of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coutinho EP, Ramos ZNS, Alves AS, Oliveira RES (2012) Good manufacturing practices of cachaça from the alembic: technical and business view. J Health Sci 14(3):165–170

    Google Scholar 

  2. Gomes FCO, Araújo RAC, Cisalpino PS, Moreira ESA, Zani CL, Rosa CA (2009) Comparison between two selected Saccharomyces cerevisiae strains as fermentation starters in the production of traditional cachaça. Braz Arch Biol Technol 52:449–455

    Article  CAS  Google Scholar 

  3. Morais PB, Rosa CA, Linardi VR, Pataro C, Maia ABRA (1997) Characterization and succession of yeast populations associated with spontaneous fermentations during the production of Brazilian sugar-cane aguardente. World J Microbiol Biotechnol 13(2):241–243

    Article  Google Scholar 

  4. Gomes FCO, Silva CLC, Marini MM, Oliveira ES, Rosa CA (2007) Use of selected indigenous Saccharomyces cerevisiae strains for the production of the traditional cachaça in Brazil. J Appl Microbiol 103(6):2438–2447

    Article  CAS  Google Scholar 

  5. Pataro C, Guerra JB, Petrillo-Peixoto ML, Mendonca-Hagler LC, Linardi VR, Rosa CA (2000) Yeast communities and genetic polymorphism of Saccharomyces cerevisiae strains associated with artisanal fermentation in Brazil. J Appl Microbiol 89(1):24–31

    Article  CAS  Google Scholar 

  6. Fleet GH (1993) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur

    Google Scholar 

  7. Vila Nova MX, Schuler ARP, Brasileiro BTRV, Morais MA Jr (2009) Yeast species involved in artisanal cachaça fermentation in three stills with different technological levels in Pernambuco, Brazil. Food Microbiol 26(5):460–466

    Article  Google Scholar 

  8. Duarte W, Amorim J, Schwan R (2013) The effects of co-culturing non-Saccharomyces yeasts with S. cerevisiae on the sugar cane spirit (cachaça) fermentation process. Antonie Van Leeuwenhoek 103(1):175–194

    Article  CAS  Google Scholar 

  9. Gomes FCO, Pataro C, Guerra JB, Neves MJ, Corrêa SR, Moreira ESA, Rosa CA (2002) Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaça. Can J Microbiol 48(5):399–406

    Article  CAS  Google Scholar 

  10. Oliveira ES, Rosa CA, Morgano MA, Serra GE (2004) Fermentation characteristics as criteria for selection of cachaça yeast. World J Microbiol Biotechnol 20(1):19–24

    Article  CAS  Google Scholar 

  11. Oliveira ES, Cardello HMAB, Jeronimo EM, Souza ELR, Serra GE (2005) The influence of different yeasts on the fermentation, composition and sensory quality of cachaça. World J Microbiol Biotechnol 21(5):707–715

    Article  CAS  Google Scholar 

  12. Silva CLC, Vianna CR, Cadete RM, Santos RO, Gomes FCO, Oliveira ES, Rosa CA (2009) Selection, growth, and chemo-sensory evaluation of flocculent starter culture strains of Saccharomyces cerevisiae in the large-scale production of traditional Brazilian cachaça. International J Food Microbiol 131(2–3):203–210

    Article  CAS  Google Scholar 

  13. Dato MCF, Pizauro Júnior JM, Mutton MJR (2005) Analysis of the secondary compounds produced by Saccharomyces cerevisiae and wild yeast strains during the production of “cachaça”. Brazilian J Microbiol 36:70–74

    Article  CAS  Google Scholar 

  14. Esteve-Zarzoso B, Manzanares P, Ramón D, Querol A (1998) The role of non-Saccharomyces yeasts in industrial winemaking. Int Microbiol 2(1):143–148

    Google Scholar 

  15. Kurtzman C, Robnett DJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  16. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt Chem 31(3):426–428

    Article  CAS  Google Scholar 

  17. Caldas C (1998) Manual de análises selecionadas para indústrias sucroalcooleiras. Sindicato da Indústria do Açúcar e do Álcool do Estado de Alagoas, Maceió

  18. Zoecklein BW, Fugelsang KC, Gump BH (1995) Wine analysis and production. Kluwer Academic Publishers, Bruxels

    Book  Google Scholar 

  19. Bortoletto AM, Alcarde AR (2013) Congeners in sugar cane spirits aged in casks of different woods. Food Chem 139(1–4):695–701

    Article  CAS  Google Scholar 

  20. Alcarde AR, Souza LM, Bortoletto AM (2012) Ethyl carbamate kinetics in double distillation of sugar cane spirit. Part 2: influence of type of pot still. J Inst Brew 118(4):352–355

    Article  CAS  Google Scholar 

  21. Lanças FM (2004) Validação de métodos cromatográficos de análise. RiMa, São Carlos

    Google Scholar 

  22. ISO 11035 (1994) Sensory analysis—identification and selection of descriptors for establishing a sensory profile by a multidimensional approach. International Organization for Standardization, Geneva

  23. Portugal C, Palacios A (2012) Vale dos Vinhedos: Perfil produtivo de vinícolas familiares e diagnóstico qualitativo, microbiológico e sensorial de vinhos. Rev Bras Vitic Enol 4(4):18–27

    Google Scholar 

  24. Vidal EE, de Billerbeck GM, Simões DA, Schuler A, François JM, de Morais Jr MA (2013) Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation. Food Chem 138(1):701–708

    Article  CAS  Google Scholar 

  25. Alcarde AR, de Souza PA, de Souza Belluco AE (2010) Volatilization kinetics of secondary compounds from sugarcane spirits during double distillation in rectifying still. Sci Agricola 67:280–286

    Article  CAS  Google Scholar 

  26. Brasil (2005) Regulamento técnico para fixação dos padrões de identidade e qualidade para aguardente de cana e para cachaça. Instrução normativa 13. Diário Oficial da União, Brasília, 06/29/2005

  27. Vadkertiová R, Molnárová J, Vránová D, Sláviková E (2012) Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can J Microbiol 58(12):1344–1352

    Article  Google Scholar 

  28. Portugal C, Pinto L, Ribeiro M, Tenorio C, Igrejas G, Ruiz-Larrea F (2015) Potential spoilage yeasts in winery environments: characterization and proteomic analysis of Trigonopsis cantarellii. Int J Food Microbiol 210:113–120

    Article  CAS  Google Scholar 

  29. Coda R, Rizzello CG, Di Cagno R, Trani A, Cardinali G, Gobbetti M (2013) Antifungal activity of Meyerozyma guilliermondii: identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol 33(2):243–251

    Article  Google Scholar 

  30. Jensen SL, Umiker NL, Arneborg N, Edwards CG (2009) Identification and charaterization of Dekkera bruxellensis, Candida pararugosa, and Pichia guilliermondii isolated fromcommercial red wines. Food Microbiol 26(8):915–921

    Article  CAS  Google Scholar 

  31. Lopes C, Rodríguez M, Sangorrín M, Querol A, Caballero A (2007) Patagonian wines: implantation of an indigenous strain of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars. J Ind Microbiol Biotechnol 34(2):139–149

    Article  CAS  Google Scholar 

  32. Moreira N, Mendes F, Guedes de Pinho P, Hogg T, Vasconcelos I (2008) Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. Int J Food Microbiol 124(3):231–238

    Article  CAS  Google Scholar 

  33. Schwan RF, Mendonça A, da Silva JJ Jr, Rodrigues V, Wheals AE (2001) Microbiology and physiology of cachaça (aguardente) fermentations. Antonie Van Leeuwenhoek 79(1):89–96

    Article  CAS  Google Scholar 

  34. da Conceição LEFR, Saraiva MAF, Diniz RHS, Oliveira J, Barbosa GD, Alvarez F, da Mata Correa LF, Mezadri H, Coutrim MX, Afonso RJdF, Lucas C, Castro IM, Brandão RL (2015) Biotechnological potential of yeast isolates from cachaça: the Brazilian spirit. J Ind Microbiol Biotechnol 42(2):237–246

    Article  Google Scholar 

  35. Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14(2):215–237

    Article  CAS  Google Scholar 

  36. Moreira N, Pina C, Mendes F, Couto JA, Hogg T, Vasconcelos I (2011) Volatile compounds contribution of Hanseniaspora guilliermondii and Hanseniaspora uvarum during red wine vinifications. Food Control 22(5):662–667

    Article  CAS  Google Scholar 

  37. Mingorance-Cazorla L, Clemente-Jiménez JM, Martínez-Rodríguez S, Las Heras-Vázquez FJ, Rodríguez-Vico F (2003) Contribution of different natural yeasts to the aroma of two alcoholic beverages. World J Microbiol Biotechnol 19(3):297–304

    Article  CAS  Google Scholar 

  38. Huang CJ, Lee SL, Chou CC (2000) Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J Biosci Bioeng 90(2):142–147

    Article  CAS  Google Scholar 

  39. Martini C, Margarido LAC, Ceccato-Antonini SR (2010) Microbiological and physicochemical evaluations of juice extracted from different parts of sugar cane stalks from three varieties cultivated under organic management. Food Sci Technol (Campinas) 30:808–813

    Google Scholar 

  40. Carvalho-Netto OV, Rosa DD, Camargo LEA (2008) Identification of contaminant bacteria in cachaça yeast by 16 s rDNA gene sequencing. Sci Agric 65:508–515

    Article  Google Scholar 

  41. Duarte WF, de Sousa MVF, Dias DR, Schwan RF (2011) Effect of co-inoculation of Saccharomyces cerevisiae and Lactobacillus fermentum on the quality of the distilled sugar cane beverage cachaça. J Food Sci 76(9):C1307–C1318

    Article  CAS  Google Scholar 

  42. Gomes FCO, Silva CLC, Vianna CR, Lacerda ICA, Borelli BM, Nunes ÁC, Franco GR, Mourão MM, Rosa CA (2010) Identification of lactic acid bacteria associated with traditional cachaça fermentations. Braz J Microbiol 41:486–492

    Article  CAS  Google Scholar 

  43. Cole V, Noble A (1995) Flavor chemistry and assessment. Fermented beverage production. Springer, Berlin, pp 361–385

    Chapter  Google Scholar 

  44. Bortoletto AM, Alcarde AR (2015) Assessment of chemical quality of Brazilian sugar cane spirits and cachaças. Food Control 54:1–6

    Article  CAS  Google Scholar 

  45. Borges GBV, Gomes FdCO, Badotti F, Silva ALD, Machado AMdR (2014) Selected Saccharomyces cerevisiae yeast strains and accurate separation of distillate fractions reduce the ethyl carbamate levels in alembic cachaças. Food Control 37:380–384

    Article  CAS  Google Scholar 

  46. Riachi LG, Santos A, Moreira RFA, De Maria CAB (2014) A review of ethyl carbamate and polycyclic aromatic hydrocarbon contamination risk in cachaça and other Brazilian sugarcane spirits. Food Chem 149:159–169. doi:10.1016/j.foodchem.2013.10.088

    Article  CAS  Google Scholar 

  47. Boza Y, Horii J (1998) Influência da destilação sobre a composição e a qualidade sensorial da aguardente de cana-de-açúcar. Food Sci Tech (Campinas) 18:391–396

    CAS  Google Scholar 

  48. Procopio S, Qian F, Becker T (2011) Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur Food Res Technol 233(5):721–729

    Article  CAS  Google Scholar 

  49. Vicente MA, Fietto LG, Castro IM, dos Santos ANG, Coutrim MX, Brandão RL (2006) Isolation of Saccharomyces cerevisiae strains producing higher levels of flavoring compounds for production of “cachaça” the Brazilian sugarcane spirit. Int J Food Microbiol 108(1):51–59

    Article  CAS  Google Scholar 

  50. Serafim FAT, Seixas FRF, Da Silva AA, Galinaro CA, Nascimento ESP, Buchviser SF, Odello L, Franco DW (2013) Correlation between chemical composition and sensory properties of Brazilian sugarcane spirits (cachaças). J Braz Chem Soc 24(6):973–982

    CAS  Google Scholar 

  51. Souza A, Vicente M, Klein R, Fietto L, Coutrim M, Cássia Franco Afonso R, Araújo L, Silva P, Bouillet L, Castro I, Brandão R (2012) Strategies to select yeast starters cultures for production of flavor compounds in cachaça fermentations. Antonie Van Leeuwenhoek 101(2):379–392

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the valuable logistical collaboration of Dr. Fernando Andreote and his team of Soil Microbiology Lab (ESALQ-USP). Thanks to Pedro Lucentini, Sylvino Torrezan and Rosemary da Silva for the technical support on sampling and analysis.

Funding

This study was funded by the São Paulo Research Foundation (Grant no. 2013/03766-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cauré Barbosa Portugal.

Ethics declarations

Conflict of interest

Cauré B. Portugal has received research grants from the São Paulo Research Foundation (FAPESP). Aline M. Bortoletto has received research grants from the São Paulo Research Foundation (FAPESP). André R. Alcarde has received research grants from the São Paulo Research Foundation (FAPESP). Arthur P. de Silva has received research grants from the National Counsel of Technological and Scientific Development (CNPQ).

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portugal, C.B., Alcarde, A.R., Bortoletto, A.M. et al. The role of spontaneous fermentation for the production of cachaça: a study of case. Eur Food Res Technol 242, 1587–1597 (2016). https://doi.org/10.1007/s00217-016-2659-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2659-3

Keywords

Navigation