Skip to main content
Log in

Authentication of closely related scombrid, catfish and tilapia species by PCR-based analysis and isoelectric focusing of parvalbumin

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In recent decades, the authentication of fishery products has relied mainly on DNA analysis of mitochondrial genes; however, these methods cannot distinguish hybrids from their respective maternal species. As an alternative for wild or farmed hybrid fish authentication, we developed assays based on the amplification of a parvalbumin intron by exon-primed intron-crossing PCR. Parvalbumins, the major class of fish allergens, are encoded by nuclear genes and are present in high concentrations in the light muscle of many fish species. Amplicons of analysed fish species were characterized by sequencing (tunas), single strand conformation polymorphism (SSCP) (scombrid, catfish, tilapia, and snapper species) and restriction fragment length polymorphism (RFLP) (catfish) analyses. The SSCP method differentiated catfish, tilapia, snapper and scombrid species except tunas. Tunas of the genus Thunnus had an unexpected low variability of intron sequences, which prevented their differentiation by sequencing or SSCP. For study of hybrid catfish, RFLP analysis with Ban I endonuclease was used to construct specific DNA fragment profiles. Isoelectric focusing (IEF) of sarcoplasmic proteins was a rapid screening method to identify catfish, tilapia and snapper species because of their specific protein patterns. The heat-stable, anodic protein bands of these patterns presumably belong to parvalbumins, the major class of fish allergens. PCR and IEF techniques for analysing parvalbumins can be used as routine methods to control the labelling of fish products with the exception of tuna products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FAO (2012) The state of world fisheries and aquaculture. FAO, Rome

    Google Scholar 

  2. D’Amico P, Armani A, Castigliego L, Sheng G, Gianfaldoni G, Guidi A (2014) Seafood traceability issues in Chinese food business activities in the light of European provisions. Food Control 35:7–13

    Article  Google Scholar 

  3. Jacquet JL, Pauly D (2008) Trade secrets: renaming and mislabeling of seafood. Mar Policy 32:309–318

    Article  Google Scholar 

  4. Galal-Khallaf A, Ardura A, Mohammed-Geba K, Borrell YJ, Garcia-Vazquez E (2014) DNA barcoding reveals a high level of mislabeling in Egyptian fish fillets. Food Control 46:441–445

    Article  CAS  Google Scholar 

  5. Hanner R, Becker S, Ivanova N, Steinke D (2011) FISH-BOL and seafood identification: geographically dispersed case studies reveal systemic market substitution across Canada. Mitochondrial DNA 22(Suppl 1):106–122

    Article  CAS  Google Scholar 

  6. Na-Nakorn U, Brummett RE (2009) Use and exchange of aquatic genetic resources for food and aquaculture: Clarias catfish. Rev Aquac 1:214–223

    Article  Google Scholar 

  7. Bartley D, Rana K, Immink A (2001) The use of inter-specific hybrids in aquaculture and fisheries. Rev Fish Biol Fish 10:325–337

    Article  Google Scholar 

  8. Hashimoto DT, do Prado FD, Senhorini JA, Foresti F, Porto-Foresti F (2013) Detection of post-F1 hybrids in broodstock using molecular markers: approaches for genetic management in aquaculture. Aquac Res 44:876–884

    Article  CAS  Google Scholar 

  9. Scribner KT, Page KS, Bartron ML (2001) Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Rev Fish Biol Fish 10:293–323

    Article  Google Scholar 

  10. Ardura A, Planes S, Garzia-Vazquez E (2013) Applications of DNA barcoding to fish landings: authentication and diversity assessment. ZooKeys 365:49–65

    Article  Google Scholar 

  11. Barbuto M, Galimberti A, Ferri E, Labra M, Malandra R, Galli P, Casiraghi M (2010) DNA barcoding reveals fraudulent substitutions in shark seafood products: the Italian case of “palombo” (Mustelus spp.). Food Res Int 43:376–381

    Article  CAS  Google Scholar 

  12. Hellberg RS, Morrissey MT (2011) Advances in DNA-based techniques for the detection of seafood species substitution on the commercial market. J Lab Autom 16:308–321

    Article  Google Scholar 

  13. Handy SM, Deeds JR, Ivanova NV, Hebert PD, Hanner RH, Ormos A, Weigt LA, Moore MM, Yancy HF (2011) A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. J AOAC Int 94:201–210

    CAS  Google Scholar 

  14. Galimberti A, De Mattia F, Losa A, Bruni I, Federici S, Casiraghi M, Martellos S, Labra M (2013) DNA barcoding as a new tool for food traceability. Food Res Int 50:55–63

    Article  CAS  Google Scholar 

  15. Wong EH-K, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837

    Article  CAS  Google Scholar 

  16. Lago FC, Alonso M, Vieites JM, Espiñeira M (2014) Fish and seafood authenticity-species identification. In: Boziaris IS (ed) Seafood processing: technology, quality and safety. Wiley Blackwell, Chichester, pp 419–452

    Google Scholar 

  17. Altinelataman C, Kündiger R, Cakli S, Rehbein H (2009) Comparison of IEF patterns of sarcoplasmic proteins of fish from North Atlantic and Aegean Sea. Food Control 20:980–985

    Article  CAS  Google Scholar 

  18. Berrini A, Tepedino V, Borromeo V, Secchi C (2006) Identification of freshwater fish commercially labelled “perch” by isoelectric focusing and two-dimensional electrophoresis. Food Chem 96:163–168

    Article  CAS  Google Scholar 

  19. Tepedino V, Ababouch M, Ferri M, Berrini A (2008) Commercial fish species identification with isoelectric focusing: application to breaded fish products, vol 904. FAO Fisheries and Aquaculture Report, Rome, pp 115–118

    Google Scholar 

  20. Schiefenhövel K, Rehbein H (2013) Differentiation of Sparidae species by DNA sequence analysis, PCR-SSCP and IEF of sarcoplasmic proteins. Food Chem 138:154–160

    Article  Google Scholar 

  21. Griffiths AM, Sotelo CG, Mendes R, Pérez-Martín RI, Schröder U, Shorten M, Silva HA, Verrez-Bagnis V, Mariani S (2014) Current methods for seafood authenticity testing in Europe: is there a need for harmonisation? Food Control 45:95–100

    Article  Google Scholar 

  22. Carrera M, Cañas B, Piñeiro C, Vázquez J, Gallardo JM (2006) Identification of commercial hake and grenadier species by proteomic analysis of the parvalbumin fraction. Proteomics 6:5278–5287

    Article  CAS  Google Scholar 

  23. Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93:93–145

    Article  CAS  Google Scholar 

  24. Civera T (2003) Species identification and safety of fish products. Vet Res Commun 27:481–489

    Article  Google Scholar 

  25. Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36(1):3–15

    Article  Google Scholar 

  26. Bottero MT, Dalmasso A (2011) Animal species identification in food products: evolution of biomolecular methods. Vet J 190(1):34–38

    Article  CAS  Google Scholar 

  27. Antoniou A, Magoulas A (2014) Application of mitochondrial DNA in stock identification. Stock identification methods, 2nd edn. Academic Press, San Diego, pp 257–295

    Book  Google Scholar 

  28. Rehbein H (2013) Differentiation of fish species by PCR-based DNA analysis of nuclear genes. Eur Food Res Technol 236:979–990

    Article  CAS  Google Scholar 

  29. Abdullah A, Rehbein H (2014) Authentication of raw and processed tuna from Indonesian markets using DNA barcoding, nuclear gene and characater-based approach. Eur Food Res Technol 239:695–706

    Article  CAS  Google Scholar 

  30. Cawthorn D, Steinman H, Witthuhn R (2011) Establishment of a mitocondrial DNA sequence database for the identification of fish species commercially available in South Africa. Mol Ecol Resour 11:979–991

    Article  CAS  Google Scholar 

  31. Viñas J, Tudela S (2009) A validated methodology for genetic identification of tuna species (genus Thunnus). PLoS ONE 4(10):e7606

    Article  Google Scholar 

  32. Rasmussen RS, Morrissey MT (2008) DNA-based methods for the identification of Commercial Fish and Seafood Species. Compr Rev Food Sci Food Saf 7:280–295

    Article  CAS  Google Scholar 

  33. Lopata A, Potter P (2000) Allergy and other adverse reactions to seafood. Allergy Clin Immunol Int 12:271–281

    Article  Google Scholar 

  34. Pascual C, Reche M, Fiandor A, Valbuena T, Cuevas T, Esteban M (2008) Fish allergy in childhood. Pediatr Allergy Immunol 19:573–579

    Article  Google Scholar 

  35. Mills EC, Mackie AR, Burney P, Beyer K, Frewer L, Madsen C et al (2007) The prevalence, cost and basis of food allergy across Europe. Allergy 62(7):717–722

    Article  CAS  Google Scholar 

  36. Rencova E, Kostelnikova D, Tremlova B (2013) Detection of allergenic parvalbumin of Atlantic and Pacific herrings in fish products by PCR. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:1679–1683

    Article  CAS  Google Scholar 

  37. Lim DL, Neo KH, Yi FC, Chua KY, Goh DL, Shek LP, Giam YC, Van Bever HP, Lee BW (2008) Parvalbumin–the major tropical fish allergen. Pediatr Allergy Immunol 19:399–407

    Article  Google Scholar 

  38. Sharp MF, Lopata AL (2014) Fish allergy: in review. Clin Rev Allergy Immunol 46(3):258–271

    Article  CAS  Google Scholar 

  39. Nwaru BI, Hickstein L, Panesar SS, Muraro A, Werfel T, Cardona V et al (2014) The epidemiology of food allergy in Europe: a systematic review and meta-analysis. Allergy 69(1):62–75

    Article  CAS  Google Scholar 

  40. Liu GM, Huang YY, Cai QF, Weng L, Su WJ, Cao MJ (2010) Effect of in vitro gastrointestinal digestion of freshwater fish parvalbumins [J]. J Fish China 7:020

    Google Scholar 

  41. Elsayed S, Bennich H (1975) The primary structure of allergen M from cod. Scand J Immunol 4:203–208

    Article  CAS  Google Scholar 

  42. Lindstrøm C, van Dô T, Hordvik I, Endresen C, Elsayed S (1996) Cloning of two distinct cDNAs encoding parvalbumin, the major allergen of Atlantic salmon (Salmo salar). Scand J Immunol 44:335–344

    Article  Google Scholar 

  43. Swoboda I, Bugajska-Schretter A, Valenta R, Spitzauer S (2002) Recombinant fish parvalbumins: candidates for diagnosis and treatment of fish allergy. Allergy 57(Suppl 72):94–96

    Article  Google Scholar 

  44. Van Do T, Hordvik I, Endresen C, Elsayed S (2003) The major allergen (parvalbumin) of codfish is encoded by at least two isotypic genes: cDNA cloning, expression and antibody binding of the recombinant allergens. Mol Immunol 39:595–602

    Article  Google Scholar 

  45. Carrera M, Cañas B, Gallardo J (2012) Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. J Proteomics 75:3211–3220

    Article  CAS  Google Scholar 

  46. Kuehn A, Swoboda I, Arumugam K, Hilger C, Hentges F (2014) Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol 5:179

    Article  Google Scholar 

  47. Focant B, Mélot F, Collin S, Chikou A, Vandewalle P, Huriaux F (1999) Muscle parvalbumin isoforms of Clarias gariepinus, Heterobranchus longifilis, and Chrysichthys auratus: isolation characterization and expression during development. J Fish Biol 54:832–851

    CAS  Google Scholar 

  48. Arif S, A-u Hasnain (2010) A major cross-reactive fish allergen with exceptional stability: parvalbumin. Afr J Food Sci 4:109–114

    CAS  Google Scholar 

  49. Kawase S, Ushio H, Ohshima T, Yamanaka H, Fukuda H (2001) Preparation of monoclonal antibodies against tuna parvalbumin. Fish Sci 67:559–561

    Article  CAS  Google Scholar 

  50. Kuehn A, Scheuermann T, Hilger C, Hentges F (2010) Important variations in parvalbumin content in common fish species: a factor possibly contributing to variable allergenicity. Int Arch Allergy Immunol 153:359–366

    Article  CAS  Google Scholar 

  51. Lim DL, Neo KH, Goh DL, Shek LP, Lee BW (2005) Missing parvalbumin: implications in diagnostic testing for tuna allergy. J Allergy Clin Immunol 115:874–875

    Article  CAS  Google Scholar 

  52. Rosmilah M, Shahnaz M, Meinir J, Masita A, Noormalin A, Jamaluddin M (2013) Identification of parvalbumin and two new thermolabile major allergens of Thunnus tonggol using a proteomics approach. Int Arch Allergy Immunol 162:299–309

    Article  CAS  Google Scholar 

  53. Shiomi K, Hamada Y, Sekiguchi K, Shimakura K, Nagashima Y (1999) Two classes of allergens, parvalbumins and higher molecular weight substances, in Japanese Eel and Bigeye Tuna. Fish Sci 65:943–948

    CAS  Google Scholar 

  54. Lee SJ, Ju CC, Chu SL, Chien MS, Chan TH, Liao WL (2007) Molecular cloning, expression and phylogenetic analyses of parvalbumin in tilapia, Oreochromis mossambicus. J Exp Zool A Ecol Genet Physiol 307:51–61

    Article  Google Scholar 

  55. Rosmilah M, Shahnaz M, Masita A, Noormalin A, Jamaludin M (2005) Identification of major allergens of two species of local snappers: Lutjanus argentimaculatus (merah/red snapper) and Lutjanus johnii (jenahak/golden snapper). Trop Biomed 22:171–177

    CAS  Google Scholar 

  56. Ebo DG, Kuehn A, Bridts CH, Hilger C, Hentges F, Stevens WJ (2010) Monosensitivity to pangasius and tilapia caused by allergens other than parvalbumin. J Investig Allergol Clin Immunol 20:84–88

    CAS  Google Scholar 

  57. Rehbein H (2008) New fish on the german market: consumer protection against fraud by identification of species. Journal für Verbraucherschutz und Lebensmittelsicherheit 3:49–53

    Article  CAS  Google Scholar 

  58. Manthey M, Hilge V, Rehbein H (1988) Sensory and chemical evaluation of three catfish species (Silurus glanis, Ictalurus punctatus, Clarias gariepinus) from intensive culture. Arch FischWiss 38:215–227

    Google Scholar 

  59. Rehbein H, Näumann G, Stumme B (2011) Differenzierung von Pangasius (Pangasius hypophthalmus) und Asiatischem Rotflossenwels (Hemibagrus wyckioides) durch Protein- und DNA-Analyse [Differentiation between Pangasius (Pangasius hypophthalmus) and Asian Redtail catfish (Hemibagrus wyckioides) by protein-and DANN analysis]. Inf Fischereiforsch 58:13–19

    Google Scholar 

  60. Rehbein H (2011) Identifizierung der Welsart in Filetware durch Protein- und DNA-Analyse [Identification of the catfish species in case of fillets by Protein- and DNA-Analysis]. Inf Fischereiforsch 58:35–41

    Google Scholar 

  61. Carpenter KE, Niem VH (1999). FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. FAO Library

  62. Rehbein H (2005) Identification of the fish species of raw or cold-smoked salmon and salmon caviar by single-strand conformation polymorphism (SSCP) analysis. Eur Food Res Technol 220:625–632

    Article  CAS  Google Scholar 

  63. Downs TR, Wilfinger WW (1983) Fluorometric quantification of DNA in cells and tissue. Anal Biochem 131:538–547

    Article  CAS  Google Scholar 

  64. Rehbein H, Kreß G (2005) Detection of short mRNA sequences in fishery products. Dtsch Lebensm-Rundsch 101:333–337

    CAS  Google Scholar 

  65. Xu YX, Zhu ZY, Lo LC, Wang CM, Lin G, Feng F, Yue GH (2006) Characterization of two parvalbumin genes and their association with growth traits in Asian seabass (Lates calcarifer). Anim Genet 37:266–268

    Article  CAS  Google Scholar 

  66. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  67. Schiefenhövel K, Rehbein H (2011) Identification of barramundi (Lates calcarifer) and tilapia (Oreochromis spp.) fillets by DNA- and protein-analytical methods. Journal für Verbraucherschutz und Lebensmittelsicherheit 6:203–214

    Article  Google Scholar 

  68. Kuehn A, Hilger C, Graf T, Hentges F (2012) Protein-and DNA-based assays as complementary tools for fish allergen detection. Allergologie 35(7):343–350

    Article  Google Scholar 

  69. Berrebi P, Retif X, Fang F, Zhang C-G (2006) Population structure and systematics of Opsariichthys bidens (Osteichthyes: Cyprinidae) in south-east China using a new nuclear marker: the introns (EPIC-PCR). Biol J Linn Soc 87:155–166

    Article  Google Scholar 

  70. Hassan M, Lemaire C, Fauvelot C, Bonhomme F (2002) Seventeen new exon-primed intron-crossing polymerase chain reaction amplifiable introns in fish. Mol Ecol Notes 2:334–340

    Article  CAS  Google Scholar 

  71. Rehbein H (2007) Differentiation of hake species by RFLP- and SSCP-analysis of PCR amplified cytochrome b and parvalbumin sequences. Dtsch Lebensm-Rundsch 103:511–517

    CAS  Google Scholar 

  72. Sriphairoj K, Klinbunga S, Kamonrat W, Na-Nakorn U (2010) Species identification of four economically important Pangasiid catfishes and closely related species using SSCP markers. Aquaculture 308:S47–S50

    Article  CAS  Google Scholar 

  73. Wong LL, Peatman E, Lu J, Kucuktas H, He S, Zhou C, Na-nakorn U, Liu Z (2011) DNA barcoding of catfish: species authentication and phylogenetic assessment. PLoS ONE 6:e17812

    Article  CAS  Google Scholar 

  74. Warner K, Timme W, Lowell B, Hirshfield M (2013) Oceana study reveals seafood fraud nationwide. Oceana Science Report. http://oceana.org/en Accessed 12 Aug 2015

  75. Wong LL, Peatman E, Kelly L, Kucuktas H, Na-Nakorn U, Liu Z (2014) Catfish species identification using lab-on-chip PCR-RFLP. J Aquat Food Prod Technol 23:2–13

    Article  CAS  Google Scholar 

  76. Oberst S, Abban EK, Villwock W (1996) Biochemical and immunological markers for the discrimination of three Tilapia species: T. zillii Gervais, T. guineesis Bleeker and T. dageti Thys v.d. Audenaerde (Pisces: Cichlidae) from West Africa. Aquac Res 27:235–244

    Article  Google Scholar 

  77. Sezaki K, Watabe S, Ochiai Y, Hashimoto K (1994) Biochemical genetic evidence for a hybrid origin of spined loach, Cobitis taenia taenia, in Japan. J Fish Biol 44:683–691

    Article  CAS  Google Scholar 

  78. Chen L, Hefle S, Taylor S, Swoboda I, Goodman R (2006) Detecting fish parvalbumin with commercial mouse monoclonal anti-frog parvalbumin IgG. J Agric Food Chem 54:5577–5582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Max Rubner-Institute for supporting this research with materials for analysis and laboratory facilities. One of us (A.A) gratefully acknowledges a research Grant from Deutscher Akademischer Austausch Dienst (DAAD), Germany.

Conflict of interest

The authors declare no conflict of interest.

Compliance with Ethics Requirement

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asadatun Abdullah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, A., Rehbein, H. Authentication of closely related scombrid, catfish and tilapia species by PCR-based analysis and isoelectric focusing of parvalbumin. Eur Food Res Technol 241, 497–511 (2015). https://doi.org/10.1007/s00217-015-2479-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2479-x

Keywords

Navigation