Skip to main content
Log in

A chemometric approach to identify the grape cultivar employed to produce nutraceutical fruit juice

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Apulian farmers have begun to explore the potential of grape juice as an alternative method to increase the profitability and stability of their farming operations. Grape juice obtained from table cultivar rich in polyphenols are considered value-added food products, so producers are interested in identifying an analytical method that permits (1) to quantify the phenolic composition, in order to select the richer variety of antioxidant substance, and (2) to trace the grape cultivar, in order to have a tool to protect their nutraceutical product from imitations. In this work, a chemometric approach, consisting of the comprehensive application of two-way full-factorial MANOVA, hierarchical cluster (HCA), and principal component analyses (PCA), is proposed as tool to differentiate seven table grape varieties (white, ‘Carati,’ ‘Sugraone,’ and ‘Italia’ and colored ‘Michele Palieri,’ ‘Summer Royal,’ ‘Autumn Royal,’ and ‘Crimson Seedless’) actually used to produce grape juice in Apulia. Anthocyanins were the main flavonoids in the colored grapes, and highly significant quantitative differences (F cultivar × vintage = 25,461; p < 0.001) in their profile were found; moreover, elevated levels of flavonols and flavan-3-ols were also quantified in all the varieties. According to HCA, cultivars were grouped into two clusters: one including ‘Michele Palieri,’ ‘Summer Royal,’ and ‘Autumn Royal,’ mainly characterized by the presence of anthocyanidins acetyl and coumaroyl glucosides, and the other formed by ‘Crimson Seedless,’ ‘Carati,’ ‘Sugraone,’ and ‘Italia,’ with relatively elevated level of procyanidins as well as quercetin and kaempferol derivatives; furthermore, PCA allowed to differentiate either ‘Michele Palieri,’ the only containing epicatechin, from the other colored cultivars, or ‘Italia,’ thanks to its higher content of quercetin-3-O-glucoside, from the other white grapes. Considering these results, the black cultivar ‘Michele Palieri’ has the highest suitability for the production of grape juice with nutraceutical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parpinello GP, Nunziatini G, Rombolà AD, Gottardi F, Versari A (2013) Postharvest Biol Technol 83:47–53

    Article  Google Scholar 

  2. Teissedre PL, Waterhouse AL, Walzem RL, German JB, Frankel EN, Ebeler SE, Clifford AJ (1996) Bull OIV 69:251–277

    CAS  Google Scholar 

  3. Xu C, Zhang Y, Cao L, Lu J (2010) Food Chem 119:1557–1565

    Article  CAS  Google Scholar 

  4. Ramchandani AG, Chettiyar RS, Pakhale SS (2010) Food Chem 119:298–305

    Article  CAS  Google Scholar 

  5. Camargo UA, Tonietto J, Hoffmann A (2011) Rev Bras Frutic 33:144–149

    Article  Google Scholar 

  6. Rizzon LA, Miele A (2012) Food Sci Technol 32:93–97

    Google Scholar 

  7. Grandizoli CWPDS, Campos FR, Simonelli F, Barison A (2014) Quim Nova 37:1227–1232

    CAS  Google Scholar 

  8. Ghedira K (2005) Phytotherapie 3:162–169

    Article  Google Scholar 

  9. Kamal C, Ram S, Vinay K, Sanjay K (2012) J Sci Ind Res 1:25–39

    Google Scholar 

  10. Qian Y, Agne A, Chira K, Teissèdre PL, Décordé K, Ventura E, Cristol JP, Rouanet JM (2009) Eur Food Res Technol 229:485–493

    Article  CAS  Google Scholar 

  11. Mulero J, Pardo F, Zafrilla P (2009) Eur Food Res Technol 229:807–812

    Article  CAS  Google Scholar 

  12. Tenore GC, Calabrese G, Stiuso P, Ritieni A, Giannetti D, Novellino E (2014) Food Res Int 63:252–257

    Article  CAS  Google Scholar 

  13. Coimbra SR, Lage SH, Brandizzi L, Yoshida V, Da Luz PL (2005) Braz J Med Biol Res 38:1339–1347

    Article  CAS  Google Scholar 

  14. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Am J Clin Nutr 79:727–747

    CAS  Google Scholar 

  15. Pinelo M, Arnous A, Meyer AS (2006) Trends Food Sci Technol 17:579–590

    Article  CAS  Google Scholar 

  16. Gómez Gallego MA, GómezGarcía-Carpintero E, Sánchez-Palomo E, Hermosín-Gutiérrez I, González Viñas MA (2012) Eur Food Res Technol 234:295–303

    Article  Google Scholar 

  17. Versari A, Laurie VF, Ricci A, Laghi L, Parpinello GP (2014) Food Res Int 60:2–18

    Article  CAS  Google Scholar 

  18. Bergamini C, Caputo AR, Gasparro M, Perniola R, Cardone MF, Antonacci D (2013) Mol Biotechnol 53:278–288

    Article  CAS  Google Scholar 

  19. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Maul E (2004) Theor Appl Genet 109:1448–1458

    Article  CAS  Google Scholar 

  20. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Genome 39:628–633

    Article  CAS  Google Scholar 

  21. Bowers JE, Dangl GS, Meredith CP (1999) Am J Enol Vitic 50:243–246

    CAS  Google Scholar 

  22. Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Genome 42:367–373

    Article  CAS  Google Scholar 

  23. Crupi P, Coletta A, Milella RA, Perniola R, Gasparro M, Genghi R, Antonacci D (2012) J Food Sci 77:C174–C181

    Article  CAS  Google Scholar 

  24. Pati S, Crupi P, Benucci I, Antonacci D, Di Luccia A, Esti M (2014) Food Res Int 66:207–215

    Article  CAS  Google Scholar 

  25. Guidoni S, Hunter JJ (2012) Eur Food Res Technol 235:397–408

    Article  CAS  Google Scholar 

  26. Gómez Gallego MA, Sánchez-Palomo E, Hermosín-Gutiérrez I, González Viñas MA (2013) Eur Food Res Technol 236:647–658

    Article  Google Scholar 

  27. Pomar F, Novo M, Masa A (2005) J Chromatogr A 1094:34–41

    Article  CAS  Google Scholar 

  28. Makris DP, Kallithraka S, Kefalas P (2006) J Food Compos Anal 19:396–404

    Article  CAS  Google Scholar 

  29. Monagas M, Gómez-Cordovés C, Bartolomé B, Laureano O, Ricardo da Silva JM (2003) J Agric Food Chem 51:6475–6481

    Article  CAS  Google Scholar 

  30. Cuyckens F, Claeys M (2004) J Mass Spectrom 39:1–15

    Article  CAS  Google Scholar 

  31. Cantos E, Espín JC, Tomás-Barberán FA (2002) J Agric Food Chem 50:5691–5696

    Article  CAS  Google Scholar 

  32. The European Vitis Database, 2007 from: http://www.eu-vitis.de/index.php

Download references

Acknowledgments

This study was supported by grant from Apulia Region (“PS_026” Project) and Italian Ministry of University and Research-MIUR (PON “R&C”-2007-2013-Project ONEV- cod.00134/2011).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Crupi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crupi, P., Bergamini, C., Perniola, R. et al. A chemometric approach to identify the grape cultivar employed to produce nutraceutical fruit juice. Eur Food Res Technol 241, 487–496 (2015). https://doi.org/10.1007/s00217-015-2478-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2478-y

Keywords

Navigation