Skip to main content

Advertisement

Log in

Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The trade of fresh fruits from tropical countries has steadily increased over the past decades, but limited familiarity of consumers with these products has limited their introduction in worldwide markets. The increasing competition in European and international fruit markets is generating the need for improved ripeness evaluation techniques to assess fruit quality standards. As tropical fruits produce a wide range of volatile organic compounds (VOCs), PTR-ToF-MS was used to fingerprint the volatile profile of four tropical fruits (avocado, banana, mango and mangosteen) and determine whether this instrument could be used to assess fruit ripening stages, which was measured with traditional methods. Data were subsequently subjected to partial least squares discriminant analysis. By pooling the entire dataset together, it emerges that VOCs and chemical analyses enabled the separation of the two different ripening stages of all fruits, while skin color and fruit firmness did not always enable that separation. For avocado, banana and mangosteen, it was possible to observe the process of maturation during the shelf life, via physicochemical parameters and VOC analysis, whereas for mango, the constant production of methanol and acetaldehyde detected at both stages, together with the unchanged of evolution of the physicochemical parameters (TSS, pH and color), indicated a lack of maturation. Given the rapidity and the potential to use this analysis method on a large scale, the PTR-ToF-MS has a high potential to become a commercial standard tool for monitoring food quality from entering the storage chain up to the ‘ready to eat’ labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sabbe S, Verbeke W, Van Damme P (2009) Confirmation/disconfirmation of consumers’ expectations about fresh and processed tropical fruit products. Int J Food Sci Tech 44:539–551

    Article  CAS  Google Scholar 

  2. Menesatti P, Pallottino F, De Prisco N, Laderchi DR (2014) Intermodal vs conventional logistic of refrigerated products: a case study from Southern to Northern Europe. Agric Eng Int CIGR J 16:81–88

    Google Scholar 

  3. Centeno G (2005) El Mercado de las frutas tropicales exoticas en la Union Europea. CIMS, Costa Rica, p 39

    Google Scholar 

  4. Sabbe S, Verbeke W, Van Damme P (2009) Familiarity and purchasing intention of Belgian consumers for fresh and processed tropical fruit products. Br Food J 110(8):805–818

    Article  Google Scholar 

  5. CBI (2013) Tradewatch fresh fruit and vegetables market in the EU. http://www.cbi.eu

  6. Luckow T, Delahunty C (2004) Which juice is ‘healthier’? A consumer study of probiotic non-dairy juice drinks. Food Qual Prefer 15:751–759

    Article  Google Scholar 

  7. Siriphanich J (2002) Postharvest physiology of tropical fruit. Acta Hort 575:623–633

    CAS  Google Scholar 

  8. Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FAI, Crisosto CHA (2009) Fruit quality gene map of Prunus. BMC Genomics 10:587

    Article  Google Scholar 

  9. Kader AA (2008) Flavor quality of fruits and vegetables. J Sci Food Agric 88:1863–1868

    Article  CAS  Google Scholar 

  10. Vallone S, Lloyd NW, Ebeler SE, Zakharov F (2012) Fruit volatile analysis using an electronic nose. J Vis Exp 61:3821

    Google Scholar 

  11. El Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J (2013) Advances in fruit aroma volatile research. Molecules 18:8200–8229

    Article  Google Scholar 

  12. Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54:712–732

    Article  CAS  Google Scholar 

  13. Maffei ME (2010) Changes in biosynthesis of aroma volatile compounds during on-tree maturation of “Pink Lady” apples. South Afr J Bot 76:612–631

    Article  CAS  Google Scholar 

  14. Verbeke W (2006) Functional foods: consumer willingness to compromise on taste for health? Food Qual Prefer 17:126–131

    Article  Google Scholar 

  15. Enneking U, Neumann C, Henneberg S (2007) How important intrinsic and extrinsic product attributes affect purchase decision. Food Qual Prefer 18:133–138

    Article  Google Scholar 

  16. Tuorila H, Cardello AV (2002) Consumer responses to an off flavor in juice in the presence of specific health claims. Food Qual Prefer 13:561–569

    Article  Google Scholar 

  17. Kader AA (2004) Perspective on postharvest horticulture (1978–2003). HortScience 38:1004–1008

    Google Scholar 

  18. Tucker GA (1993) In: Seymour GB, Taylor JE, Tucker GA (eds) Biochemistry of fruit ripening. Chapman and Hall, London, pp 1–51

    Chapter  Google Scholar 

  19. Aparicio R, Harwood J (2013) Handbook of olive oil: analysis and properties. Springer, New York, pp 261–309

    Book  Google Scholar 

  20. Taiti C, Costa C, Menesatti P, Comparini D, Bazihizina N, Azzarello E, Masi E, Mancuso S (2014) Class-modeling approach to PTR-TOF-MS data: a peppers case study. J Sci Food Agric. doi:10.1002/jsfa.676121

    Google Scholar 

  21. Cappellin L, Biasioli F, Granitto PB, Schuhfried E, Soukoulis C, Costa F, Tillman MD, Gasperi F (2011) On data analysis in PTR-TOF-MS: from raw spectra to data mining. Sens Actuators B Chem 155:183–190

    Article  CAS  Google Scholar 

  22. Soukoulis C, Cappellin L, Aprea E, Costa F, Viola R, Märk TD, Gasperi F, Biasioli F (2013) PTR-ToF-MS, a novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: the case study of apple ripening. Food Bioprocess Tech 6:2831–2843

    Article  CAS  Google Scholar 

  23. Masi E, Romani A, Pandolfi C, Heimler D, Mancuso S (2014) PTR-ToF-MS analysis of volatile compounds in olive fruits. J Sci Food Agric. doi:10.1002/jsfa.6837

    Google Scholar 

  24. Hunter RS (1975) The Measurement of appearance. Academic Press, London, pp 103–110

    Google Scholar 

  25. AOAC (1990) Official methods of analysis. AOAC, Virginia

    Google Scholar 

  26. Bico SLS, Raposo MFJ, Morais RMSC, Morais AMMB (2009) Combined effects of chemical dip and/or carrageenan coating and or controlled atmosphere on quality of fresh-cut banana. Food Control 20:508–514

    Article  CAS  Google Scholar 

  27. Werman MJ, Neeman I (1987) Avocado oil productions and chemical characteristics. JAOCS 64(2):229

    CAS  Google Scholar 

  28. Ozdemir F, Topuz A (2004) Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Food Chem 86:79–83

    Article  CAS  Google Scholar 

  29. Lee SK, Young RE, Schifman PM, Coggins CW Jr (1983) Maturity studies of avocado fruit based on picking dates and dry weight. J Am Soc Hort Sci 108:390–394

    Google Scholar 

  30. IUPAC (1979) Standard methods for the analysis of the oils, fats and derivatives, 6th edn. Pergamon Press, Oxford, UK 

    Google Scholar 

  31. Buttery RG (1993) In: Acree TE, Teranishi R (eds) Sensible principles and techniques, 1st edn. ACS, Washington, pp 259–286

    Google Scholar 

  32. Singh Z, Lalel HJD, Nair S (2004) A review of mango fruit aroma volatile compounds—State of the art research. Acta Hort 645:519–527

    CAS  Google Scholar 

  33. Warneke C, Van der Veen C, Luxembourg S, de Gouw JA, Kok A (2001) Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: calibration, humidity dependence, and field intercomparison. Int J Mass Spectrom 207:167–182

    Article  CAS  Google Scholar 

  34. Maihom T, Schuhfried E, Probst M, Limtrakul J, Tilmann MD, Biasioli F (2013) Fragmentation of allylmethylsulfide by chemical ionization: dependence on humidity and inhibiting role of water. J Phys Chem 117(24):5149–5160

    Article  CAS  Google Scholar 

  35. Lindinger W, Hansel A, Jordan A (1998) Review: on-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241

    Article  CAS  Google Scholar 

  36. Brilli F, Ruuskanen TM, Schnitzhofer R, Muller M, Breitenlechner M, Bittner V, Wohlfahrt G, Loreto F, Hansel A (2011) Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction ‘time-of-flight’ mass spectrometry (PTR-TOF). PLoS One 6(5):e20419

    Article  CAS  Google Scholar 

  37. Herbig J, Müller M, Schallhart S, Titzmann T, Graus M, Hansel A (2009) On-line breath analysis with PTR-TOF. J Breath Res 3(2):027004

    Article  Google Scholar 

  38. del Pulgar JS, Soukoulis C, Biasioli F, Cappellin L, García C, Gasperi F, Granitto P, Tillmann MD, Piasentier E, Schuhfried E (2011) Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-TOF-MS). Talanta 85:386–393

    Article  Google Scholar 

  39. Makhoul S, Romano A, Cappellin L, Spano G, Capozzi V, Benozzi E, Tilmann MD, Aprea E, Gasperi F, El Naka H, Guzzo J, Biasioli F (2014) Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters. J Mass Spectrom 49:850–859

    Article  CAS  Google Scholar 

  40. Sjöström M, Wold S, Söderström B (1986) In: Gelsema ES, Kanals LN (eds) Pattern recognition in practice II, 1st edn. Elsevier, Amsterdam, p 486

    Google Scholar 

  41. Sabatier R, Vivein M, Amenta P (2003) Two approaches for discriminant partial least square. In: Schader M, Gaul W, Vichi M (eds) Between data science and applied data analysis, 1st edn. Springer, Berlin, pp 100–108

    Chapter  Google Scholar 

  42. Forina M, Oliveri P, Lanteri S, Casale M (2008) Class-modeling techniques, classic and new, for old and new problems. Chemom Intell Lab 93(2):132–148

    Article  CAS  Google Scholar 

  43. Kennard RW, Stone A (1969) Computer aided design of experiments. Technometrics 11:137–148

    Article  Google Scholar 

  44. Swierenga H, de Groot PJ, de Weijer AP, Derksen MWJ, Buydens LMC (1998) Improvement of PLS model transferability by robust wavelength selection. Chemom Intell Lab 41:237–248

    Article  CAS  Google Scholar 

  45. Chong IG, Jun CH (2005) Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab 78:103–112

    Article  CAS  Google Scholar 

  46. Cox KA, McGhie TK, White A, Woolf AB (2004) Skin colour and pigment changes during ripening of “Hass” avocado fruit. Postharvest Biol Technol 31:287–294

    Article  CAS  Google Scholar 

  47. Landahal S, Meyer MD, Terry LA (2009) Spatial and temporal analysis of textural and biochemical changes of imported avocado cv. Hass during fruit ripening. J Agric Food Chem 57(15):7039–7047

    Article  Google Scholar 

  48. Zauberman G, Fuchs Y (1981) Effect of wounding on Fuerte avocado ripening. HortScience 16(4):496–497

    Google Scholar 

  49. Marriott J, Robinson M, Simon K (2006) Starch and sugar transformation during the ripening of plantains and bananas. J Sci Food Agric 32(10):1021–1026

    Article  Google Scholar 

  50. Maftoonazad N, Ramaswamy HS (2005) Postharvest shelf-life extension of avocados using methyl cellulose-based coating. Food Sci Technol 38:617–624

    CAS  Google Scholar 

  51. Meyer M, Terry L (2010) Fatty acid and sugar composition of avocado, cv. Hass, in response to treatment with an ethylene scavenger or 1-methylcyclopropene to extend storage life. Food Chem 121(4):1203–1210

    Article  CAS  Google Scholar 

  52. Li M, Slaughter DC, Thompson JF (1997) Optical chlorophyll sensing system for banana ripening. Postharvest Biol Technol 12(3):273–283

    Article  Google Scholar 

  53. Soltan M, Alimardani R, Omid M (2010) Comparison of some chromatic, mechanical and chemical properties of banana fruit at different stages of ripeness. MAS 4:7

    Google Scholar 

  54. Tapre AR, Jain RK (2012) Study of advanced maturity stages of banana. Int J Adv Eng Res Stud 1:272–274

    Google Scholar 

  55. Gomes JFS, Vieria RR, Leta FR (2013) Colorimetric indicator for classification of bananas during ripening. Sci Hortic 150:201–205

    Article  Google Scholar 

  56. Mendoza F, Aguilera JM (2004) Application of image analysis for classification of ripening bananas. JFS 69:9

    Google Scholar 

  57. Hibler M, Hardy D (1994) Breeding a better banana. IDRC 22(1):16–18

    Google Scholar 

  58. Liew CY, Lau CY (2012) Determination of quality parameters in Cavendish banana during ripening by NIR spectroscopy. Int Food Res J 19(2):751–758

    CAS  Google Scholar 

  59. Wyman H, Palmer JK (1964) Organic acids in the ripening banana fruit. Plant Physiol 39(4):630–633

    Article  CAS  Google Scholar 

  60. Gil MI, Barberán FA, Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agr Food Chem 48:4581–4589

    Article  CAS  Google Scholar 

  61. Medlicott AP, Thompson AK (1985) Analysis of sugars and organic acids in ripening mango fruit (Mangifera indica var. Keitt) by high performance liquid chromatography. J Sci Food Agric 36:561–566

    Article  CAS  Google Scholar 

  62. Padda MS, Do Amarante CVT, Garcia RM, Slaughter DC, Mircham EJ (2011) Methods to analysis physico-chemical changes during mango ripening: a multivariate approach. Postharvest Bio Technol 62:267–274

    Article  CAS  Google Scholar 

  63. Hossain F, Parvez AK, Munshi MK, Khalil I, Huque RJO (2014) Post-harvest treatments of radiation and chemical on organoleptic and biochemical properties of mango (Mangifera indica) in relation to delay. Am Eurasian J Agric Environ Sci 14(6):555–564

    CAS  Google Scholar 

  64. Sivakumar D, Jiang Y, Yahia EM (2011) Maintaining mango (Mangifera indica L.) fruit quality during the export chain. Food Res Int 44:1254–1263

    Article  Google Scholar 

  65. Palapol Y, Ketsa S, Stevenson D, Cooney JM, Allan AC, Ferguson IB (2009) Colour development and quality of mangosteen (Garcinia mangostana) fruit during ripening and after harvest. Postharvest Biol Technol 51:349–353

    Article  CAS  Google Scholar 

  66. Rujira C, Saichol K, Van Doorn WG (2003) Chilling injury in mangosteen fruit. J Hortic Sci Biotechnol 78(4):559–562

    Google Scholar 

  67. Tongdee SC (1985) Mangosteen. 2nd Progress Report ACIAR, Bangkok, Project 8356

  68. Nakasone HY, Paull RE (1998) Tropical Fruits. CAB Intl, Wallingford, pp 173–207

    Google Scholar 

  69. Chitarra MIF, Chitarra AB (2005) Pós-colheita de frutas e hortaliças: fisiologia e manejo. UFLA, Lavras 785

    Google Scholar 

  70. Kader AA (2002) Postharvest technology of horticulture crops, vol 3311. UCANR Publications, Richmond, pp 5–30

    Google Scholar 

  71. Jordan A, Haidacher S, Hanel G, Hartungen E, Märk L, Seehauser H, Schottokowsky P, Märk TD (2009) A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int J Mass Spectrom 286(2):122–128

    Article  CAS  Google Scholar 

  72. Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109(3):861–896

    Article  CAS  Google Scholar 

  73. Nogueira JMF, Fernandes PJP, Nascimento AMD (2003) Composition of volatiles of banana cultivars from Madeira Island. Phytochem Anal 14:87–90

    Article  CAS  Google Scholar 

  74. Pino JA, Mesa J, Munoz Y, Pilar Marti M, Marbot R (2005) Volatile components from mango (Mangifera indica L.) cultivars. J Agric Food Chem 53:2213–2223

    Article  CAS  Google Scholar 

  75. Laohakunjit N, Kerdchoechuen O, Matta FB, Silva JL, Holmes WE (2007) Postharvest survey of volatile compounds in five tropical fruits using headspace-solid phase microextraction (HS-SPME). Hortic Sci 42(2):309–314

    CAS  Google Scholar 

  76. Lebrun MA, Goodner K, Ducamp MN, Baldwin E (2008) Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography. Postharvest Biol Technol 48(1):122–131

    Article  CAS  Google Scholar 

  77. Dea S, Brecht JK, Nunes MCN, Baldwin EA (2010) Quality of fresh-cut ‘Kent’ mango slices prepared from hot water or non-hot water-treated fruit. Postharvest Biol Technol 56(2):171–180

    Article  CAS  Google Scholar 

  78. Obenland D, Collin S, Sievert J, Negm F, Arpaia ML (2012) Influence of maturity and ripening on aroma volatiles and flavor in “Hass” avocado. Postharvest Biol Technol 71:41–50

    Article  CAS  Google Scholar 

  79. Zerbini PE, Giudetti G, Rizzolo A, Grassi M (2001) Harvest and quality indexes of peach. Inf Agric 57:57–60

    Google Scholar 

  80. Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43:195–229

    Article  CAS  Google Scholar 

  81. Simpson T, Bikoba V, Mitcham EJ (2003) Effects of acetaldehyde on fruit quality and target pest mortality for harvested strawberries. Postharvest biol Technol 28(3):405–416

    Article  CAS  Google Scholar 

  82. Dixon J, Hewett EW (2000) Factors affecting apple aroma/flavour volatile concentration: a review. NZ J Crop Hortic Sci 28:155–173

    Article  CAS  Google Scholar 

  83. Purvis AC (1997) The role of adaptive enzymes in carbohydrate oxidation by stressed and senescing plant tissues. HortScience 32:1165–1168

    CAS  Google Scholar 

  84. Pesis E, Faiman D, Dori S (1998) Postharvest effects of acetaldehyde vapour on ripening-related enzyme activity in avocado fruit. Postharvest Biol Technol 13:245–253

    Article  CAS  Google Scholar 

  85. Berger RG (2007) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer, Berlin, pp 14–18

    Book  Google Scholar 

  86. Pesis E (2005) The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol Technol 37:1–19

    Article  CAS  Google Scholar 

  87. Aprea E, Romano A, Betta E, Biasioli F, Cappellin L, Fanti M, Gasperi F (2015) Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis. J Mass Spectrom 50(1):56–64

    Article  CAS  Google Scholar 

  88. Farneti B, Khomenko I, Cappellin L, Ting V, Romano A, Biasioli F, Costa G, Costa F (2014) Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS. Metabolomics. doi:10.1007/s11306-014-0744-9

    Google Scholar 

Download references

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Taiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taiti, C., Costa, C., Menesatti, P. et al. Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits. Eur Food Res Technol 241, 91–102 (2015). https://doi.org/10.1007/s00217-015-2438-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2438-6

Keywords

Navigation