Skip to main content
Log in

Assessment of expression of Leloir pathway genes in wild-type galactose-fermenting Streptococcus thermophilus by real-time PCR

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, four galactose-positive (Gal+) Streptococcus thermophilus strains viz. AJM, JM1, KM3 and AUKD8 and one galactose-negative (Gal−) S. thermophilus NCDC 218 were used to characterize the organization of Leloir pathway genes using long-range PCR, and expression of these genes were studied using real-time PCR, in presence of different sugars. Long-range PCR results showed that both Gal+ and Gal− isolates, the gal–lac gene order (galRKTEM–lacSZ), are conserved including the size of individual genes. The promoter sequence of the three Gal+ isolates (AJM, JM1 and KM3) possessed single base pair deletion at −28 region of galR and C to T substitution at −9 box galK region. In contrast, Gal+ AUKD8 had A to T substitution at preceding −25 region of galR. The expression of galK and galM grown in the presence of galactose was significantly higher in case of AJM (30- and 7.6-fold, respectively), followed by KM3 and JM1. In addition, galR, galT and galE showed higher expression in galactose, than in lactose and glucose medium. This study gives a preliminary idea on Leloir pathway gene expression in wild Gal+ S. thermophilus, and further studies may throw more light on the role of gal–lac operon in galactose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomas TD, Crow VL (1984) Selection of galactose-fermenting Streptococcus thermophilus in lactose-limited chemostat cultures. Appl Environ Microbiol 48:186–191

    CAS  Google Scholar 

  2. Somkuti GA, Steinberg DH (1979) Adaptability of Streptococcus thermophilus to lactose, glucose-and galactose. J Food Prot 42:885–887

    CAS  Google Scholar 

  3. Van den Bogaard PTC, Hols P, Kuipers OP, Kleerebezem M, de Vos WM (2004) Sugar utilisation and conservation of the gal-lac gene cluster in Streptococcus thermophilus. Syst Appl Microbiol 27:10–17

    Article  Google Scholar 

  4. De Vin F, Radstrom P, Herman L, De Vuyst L (2005) Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles. Appl Environ Microbiol 71:3659–3667

    Article  Google Scholar 

  5. Vaillancourt K, Moineau S, Frenette M, Lessard C, Vadeboncoeur C (2002) Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products. J Bacteriol 184:785–793

    Article  CAS  Google Scholar 

  6. Vaughan EE, van den Bogaard PTC, Catzeddu P, Kuipers OP, de Vos WM (2001) Activation of silent gal genes in the lac–gal regulon of Streptococcus thermophilus. J Bacteriol 183:1184–1194

    Article  CAS  Google Scholar 

  7. Umamaheswari T, Anbukkarasi K, Singh P, Tomar SK, Singh R (2014) Streptococcus thermophilus strains of plant origin as dairy starters: isolation and characterization. Int J Dairy Technol 67:117–122

    Article  CAS  Google Scholar 

  8. Lick S, Keller M, Bockelmann W, Heller KJ (1996) Rapid identification of Streptococcus thermophilus by primer-specific PCR amplification based on its lacZ gene. Syst Appl Microbiol 19:74–77

    Article  CAS  Google Scholar 

  9. Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

    Article  CAS  Google Scholar 

  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. pp 95–98

  11. Ramiah K, Van Reenen CA, Dicks LMT (2007) Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. Int J Food Microbiol 116:405–409

    Article  CAS  Google Scholar 

  12. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(suppl 2):W71–W74

    Article  Google Scholar 

  13. Bylund GO, Wipemo LC, Lundberg LA, Wikstrom PM (1998) RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 180:73–82

    CAS  Google Scholar 

  14. Ongol MP, Tanaka M, Sone T, Asano K (2009) A real-time PCR method targeting a gene sequence encoding b16S rRNA processing protein, rimM, for detection and enumeration of Streptococcus thermophilus in dairy products. Food Res Int 42:893–898

    Article  CAS  Google Scholar 

  15. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e50

    Article  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  17. Qian Z, Meng B, Wang Q, Wang Z, Zhou C, Wang Q, Tu S, Lin L, Ma Y, Liu S (2009) Systematic characterization of a novel gal operon in Thermoanaerobacter tengcongensis. Microbiol 155:1717–1725

    Article  CAS  Google Scholar 

  18. Audy J, Labrie S, Roy D, LaPointe G (2010) Sugar source modulates exopolysaccharide biosynthesis in Bifidobacterium longum subsp. longum CRC 002. Microbiol 156:653–664

    Article  CAS  Google Scholar 

  19. Neves AR, Pool WA, Solopova A, Kok J, Santos H, Kuipers OP (2010) Towards enhanced galactose utilization by Lactococcus lactis. Appl Environ Microbiol 76:7048–7060

    Article  CAS  Google Scholar 

  20. Grossiord BP, Luesink EJ, Vaughan EE, Arnaud A, deVos WM (2003) Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway. J Bacteriol 185:870–878

    Article  CAS  Google Scholar 

  21. Abranches J, Chen YY, Burne RA (2004) Galactose metabolism by Streptococcus mutans. Appl Environ Microbiol 70:6047–6052

    Article  CAS  Google Scholar 

  22. Chen YY, Betzenhauser MJ, Snyder JA, Burne RA (2002) Pathways for lactose/galactose catabolism by Streptococcus salivarius. FEMS Microbiol Lett 209:75–79

    Article  CAS  Google Scholar 

  23. Vaillancourt K, Bedard N, Bart C, Tessier M, Robitaille G, Turgeon N, Frenette M, Moineau S, Vadeboncoeur C (2008) Role of galK and galM in Galactose Metabolism by Streptococcus thermophilus. Appl Environ Microbiol 74:1264–1267

    Article  CAS  Google Scholar 

  24. Solopova A, Bachmann A, Teusink B, Ko KJ, Neves AR, Kuipers OP (2012) A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363. Appl Environ Microbiol 76:5612–5621

    Article  Google Scholar 

  25. Anbukkarasi K, Umamaheswari T, Hemalatha T, Nanda DK, Singh P, Singh R (2014) Development of low galactose yogurt using wild galactose fermenting Streptococcus thermophilus strains. J Food Sci Technol. doi:10.1007/s13197-014-1262-5

    Google Scholar 

  26. Mukherjee KK, Hutkins RW (1994) Isolation of galactose-fermenting thermophilic cultures and their use in the manufacture of low browning mozzarella cheese. J Dairy Sci 77:2839–2849

    Article  CAS  Google Scholar 

  27. Levander F, Svensson M, Radstrom P (2002) Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl Environ Microbiol 68:784–790

    Article  CAS  Google Scholar 

  28. Robitaille G, Tremblay A, Moineau S, St-Gelais D, Vadeboncoeur C, Britten M (2009) Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus. J Dairy Sci 92:477–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Sachinandan De, Biswajit Brahma and Ayan Mukherjee (Animal Biotechnology Division, National Dairy Research Institute) for their suggestions and providing laboratory facilities at different stages of this work. The research of first author has been made possible by fellowship of the Indian Council of Agricultural Research (ICAR, India).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshwar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbukkarasi, K., Nanda, D.K., UmaMaheswari, T. et al. Assessment of expression of Leloir pathway genes in wild-type galactose-fermenting Streptococcus thermophilus by real-time PCR. Eur Food Res Technol 239, 895–903 (2014). https://doi.org/10.1007/s00217-014-2286-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2286-9

Keywords

Navigation