Skip to main content
Log in

An event-specific real-time PCR detection system for the transgenic rice line 114-7-2 of producing functional human serum albumin

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Transgenic rice 114-7-2 is a newly developed transgenic rice line of producing human serum albumin (HSA). It has attracted much attention because of its economic potential. This paper was designated to discover the integration site of the transgenic HSA rice line 114-7-2 and to establish event-specific methods for qualitative and quantitative detection of the transgenic HSA rice based on the border junction fragment. One gene fragment of 5′ flanking region was successfully isolated using the TAIL-PCR methods. The fragment sequence showed that a 454-bp junction fragment contained 75 bp of T-DNA sequence and 379 bp of rice genome DNA, which is located in chromosome 4. Event-specific real-time PCR method for HSA rice line 114-7-2 was established with the primers (HSA-F/HSA-R) and the probe (HSA-P) targeting the 454-bp junction region. The qualitative PCR assay showed the limit of detection was 0.01 %. In the event-specific quantitative detection method, the LOQ for 114-7-2 HSA rice was estimated to be 0.025 ng or 50 copies. The method developed in this study is highly specific, sensitive, and reliable for transgenic HSA rice sample detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. James C (2011) Global status of commercialized biotech/GM crops: ISAAA Brief No.43. ISAAA: Ithaca, http://www.isaaa.org/resources/publications/briefs/43/executivesummary/default.asp

  2. Lu BR, Snow AA (2005) Bio Sci 55:669–678

    Google Scholar 

  3. Zhang W, Wu R (1988) Theor Appl Genet 76:835–840

    Article  CAS  Google Scholar 

  4. Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Nature 338:274–276

    Article  CAS  Google Scholar 

  5. Thiagarajasubramanian A (2005) MMG 445 Basic Biotechnol EJ 1:1–6

  6. Bajaj S, Mohanty A (2005) Plant Biotechnol J 3:275–307

    Article  CAS  Google Scholar 

  7. Datta K, Vasquez A, Tu J, Torrizo L, Alam MF, Oliva N (1998) Theor App Genet 97:20–30

    Article  CAS  Google Scholar 

  8. Irie K, Hosoyama M, Takeuchi H, Iwabuchi T, Watanabe K, Abe M, Abe K, Arai S (1996) Plant Mol Biol 30:149–157

    Article  CAS  Google Scholar 

  9. Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Nat Biotechnol 13:686–691

    Article  CAS  Google Scholar 

  10. Song WY, Wang GL, Chen LL, Han-Suk K, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) Science 270:1804–1806

    Article  CAS  Google Scholar 

  11. Zhai WX, Chen CY, Zhu XF, Chen XW, Zhang DC, Li XB, Zhu LH (2004) Theor Appl Genet 109:534–542

    Article  CAS  Google Scholar 

  12. Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I (1992) Plant Mol Biol 20:619–629

    Article  CAS  Google Scholar 

  13. Oard JH, Linscombe SD, Braverman MP, Jodari F, Blouin DC, Leech M, Kohli A, Vain P, Cooley JC, Christou P (1996) Mol Breed 2:359–368

    Article  CAS  Google Scholar 

  14. Shao CG, Wu JH, Zhou GY, Sun G, Peng BZ, Li JL, Jin DD, Chen SX, Upadhyaya NM, Waterhouse P, Gong ZX (2003) Mol Breed 11:295–301

    Article  CAS  Google Scholar 

  15. Sivamani E, Huet H, Shen P, Ong CA, Kochko AD, Fauquet C, Beachy RN (1999) Mol Breed 5:177–185

    Article  CAS  Google Scholar 

  16. Fischer R, Emans N (2000) Transgenic Res 9:279–299

    Article  CAS  Google Scholar 

  17. Ma JK, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) EMBO Rep 6:593–599

    Article  CAS  Google Scholar 

  18. He Y, Ning TT, Xie TT, Qiu QC, Zhang LP, Sun YF, Jiang DM, Fu K, Yin F, Zhang WJ, Shen L, Wang H, Li JJ, Lin QS, Sun YX, Li HZ, Zhu YG, Yang DC (2011) PNAS 108:19078–19083

    Article  CAS  Google Scholar 

  19. Alexander MR, Ambre JJ, Liskow BI, Trost DC (1979) JAMA 241:2527–2529

    Article  CAS  Google Scholar 

  20. Hastings GE, Wolf PG (1992) Arch Fam Med 1:281–287

    Article  CAS  Google Scholar 

  21. Chamberland ME, Alter HJ, Busch MP, Nemo G, Ricketts M (2001) Emerg Infect Dis 7:552–553

    CAS  Google Scholar 

  22. Erstad B (1996) Pharmacotherapy 16:996–1001

    CAS  Google Scholar 

  23. Shu QY, Ye GY, Cui HR, Cheng XY, Xiang YB, Wu DX, Gao MW, Xia YW, Cui H, Sardana R, Altosaar I (2000) Mol Breed 6:433–439

    Article  CAS  Google Scholar 

  24. Tu J, Zhang GA, Datta K, Xu CG, He YQ, Zhang QF, Khush GS, Datta SK (2000) Nat Biotechnol 18:1101–1104

    Article  CAS  Google Scholar 

  25. Chen M, Shelton A, Ye GY (2011) Annu Rev Entomol 56:81–101

    Article  CAS  Google Scholar 

  26. Wang WT, Zhu TH, Lai FX, Fu Q (2012) Eur Food Res Technol 234:477–484

    Article  CAS  Google Scholar 

  27. Grohmann L, Mäde D (2009) Eur Food Res Technol 228:497–500

    Article  CAS  Google Scholar 

  28. Babekova R, Funk T, Pecoraro S, Engel KH, Busch U (2009) Eur Food Res Technol 228:707–716

    Article  CAS  Google Scholar 

  29. Wang WX, Zhu TH, Lai FX, Fu Q (2011) Eur Food Res Technol 232:297–305

    Article  CAS  Google Scholar 

  30. Doyle JJ, Doyle JL (1987) Phytochem Bulletin 19:11–15

    Google Scholar 

  31. Singer T, Burke E (2003) Methods Mol Biol 236:241–272

    CAS  Google Scholar 

  32. Terauchi R, Kahl G (2000) Mol Gen Genet 263:554–560

    Article  CAS  Google Scholar 

  33. Rolland S, Jobic C, Fèvre M, Bruel C (2003) Curr Genet 44:164–171

    Article  CAS  Google Scholar 

  34. Plant DNA C-values Database, http://data.kew.org/cvalues/

  35. Jia SR, Peng YF (2002) Environ Biosaf Res 1:5–8

    Article  Google Scholar 

  36. Huang JK, Rozelle S, Pray C, Wang QF (2002) Science 295:674–677

    Article  CAS  Google Scholar 

  37. Messeguer J, Fogher C, Guiderdoni E, Marfa V, Catala MM, Baldi G, Melè E (2001) Theor App Genet 103:1151–1159

    Article  CAS  Google Scholar 

  38. Holst-Jensen A, Rønning SB, Løvseth A, Berdal KG (2003) Anal Bioanal Chem 375:985–993

    CAS  Google Scholar 

  39. Holst-Jensen A (2009) Biotechnol Adv 27:1071–1082

    Article  CAS  Google Scholar 

  40. European Commission Regulation (EC) No 1830/2003 of 22 September 2003 traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18. Off J Eur Commun L 268:24–28

  41. Fagan J, Schoeler B, Haegert A, Moore J, Beeby J (2010) Int J Food Sci Tech 36:357–367

    Article  Google Scholar 

Download references

Acknowledgments

We thank Daichang Yang (College of Life Sciences, Wuhan University) for providing HSA rice samples and suggestions on the manuscript. We are grateful for the support of the Important National Science & Technology Specific Projects (2013ZX08012-001) and AQSIQ Non-profit Industry Research Projects (20141004).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Huang or Shuifang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, X. & Zhu, S. An event-specific real-time PCR detection system for the transgenic rice line 114-7-2 of producing functional human serum albumin. Eur Food Res Technol 239, 403–408 (2014). https://doi.org/10.1007/s00217-014-2234-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2234-8

Keywords

Navigation