Skip to main content
Log in

Polymerization of proanthocyanidins catalyzed by polyphenol oxidase from lotus seedpod

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the profiles change in proanthocyanidins (PAs) catalyzed by polyphenol oxidase (PPO) from lotus seedpod in a model wine system (MWS). Results showed that PAs from lotus seedpod consisted of dimer (74.00 %) and trimer (22.75 %). PPO could tolerate ethanol concentrations below 20 % (v/v). The optimum temperature of PPO activity was 80 °C, and the optimal pH was 9.0. Its molecular weight was approximately 31 kDa, and its secondary structures were α-helix (59.0 %), β-sheet (4.3 %), turns (14.1 %), and random coils (22.6 %). In the MWS, the trimers gradually increased from 22.55 % at 0 h (control) to 100 % at 10 h incubation, while the dimers decreased from 74.33 % (control) to 0 % at 10 h incubation. Moreover, the composition of the precipitate formed at different incubation time points was approximately 16.54 % of monomers, 21.03 % of dimers, and 62.43 % of trimers at 2 h incubation with PPO. The results from this study have provided in vitro evidence for a possible application of PPO in red wine aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PPO:

Polyphenol oxidase

PAs:

Proanthocyanidins

MWS:

Model wine system

CD:

Circular dichroism spectroscopy

FT-IR:

Fourier transform infrared spectroscopy

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

TPC:

Total other phenolic compounds (excluding proanthocyanidins)

References

  1. Duan Y, Wang X, Xie B, Gong Y, Xiao J (2005) Study on the effects of procyanidins extracted from the lotus seedpod on rbc membrane vitamin e and fluidity of the membrane lipid in rats. Acta Nutrimenta Sinica 27:30–33

    CAS  Google Scholar 

  2. Ling Z, Xie B (2002) Effects of procyanidins extract from the lotus seedpod on reactive oxygen species and lipid peroxidation. Acta Nutrimenta Sinica 24:121–125

    CAS  Google Scholar 

  3. Ling ZQ, Xie BJ, Yang EL (2005) Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J Agric Food Chem 53:2441–2445

    Article  CAS  Google Scholar 

  4. Zhang X, Zhang B, Gong P, Zeng F (2004) Protective effect of procyanidins from the seedpod of the lotus on myocardial ischemia and its mechanisms. Chin Pharma J 39:747–750

    CAS  Google Scholar 

  5. Duan Y, Zhang H, Xu F, Xie B, Yang X, Wang Y, Yan Y (2010) Inhibition effect of procyanidins from lotus seedpod on mouse B16 melanoma in vivo and in vitro. Food Chem 122:84–91

    Article  CAS  Google Scholar 

  6. Gong Y, Liu L, Xie B, Liao Y, Yang E, Sun Z (2008) Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Behav Brain Res 194:100–107

    Article  CAS  Google Scholar 

  7. Xu J, Rong S, Xie B, Sun Z, Zhang L, Wu H, Yao P, Zhang X, Zhang Y, Liu L (2009) Rejuvenation of antioxidant and cholinergic systems contributes to the effect of procyanidins extracted from the lotus seedpod ameliorating memory impairment in cognitively impaired aged rats. Eur Neuropsychopharmacol 19:851–860

    Article  CAS  Google Scholar 

  8. Ginjom I, D’Arcy B, Caffin N, Gidley M (2011) Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process. Food Chem 125:823–834

    Article  CAS  Google Scholar 

  9. Revilla I, Gonzalez-SanJose ML (2003) Compositional changes during the storage of red, wines treated with pectolytic enzymes: low molecular-weight phenols and flavan-3-ol derivative levels. Food Chem 80:205–214

    Article  CAS  Google Scholar 

  10. Des Gachons CP, Kennedy JA (2003) Direct method for determining seed and skin proanthocyanidin extraction into red wine. J Agric Food Chem 51:5877–5881

    Article  Google Scholar 

  11. Lee J (2010) Degradation kinetics of grape skin and seed proanthocyanidins in a model wine system. Food Chem 123:51–56

    Article  CAS  Google Scholar 

  12. Gris EF, Mattivi F, Ferreira EA, Vrhovsek U, Pedrosa RC, Bordignon-Luiz MT (2011) Proanthocyanidin profile and antioxidant capacity of Brazilian Vitis vinifera red wines. Food Chem 126:213–220

    Article  CAS  Google Scholar 

  13. Cimino F, Sulfaro V, Trombetta D, Saija A, Tomaino A (2007) Radical-scavenging capacity of several Italian red wines. Food Chem 103:75–81

    Article  CAS  Google Scholar 

  14. Cosme F, Ricardo-Da-Silva JM, Laureano O (2009) Tannin profiles of Vitis vinifera L. cv. red grapes growing in Lisbon and from their monovarietal wines. Food Chem 112:197–204

    Article  CAS  Google Scholar 

  15. Garcia-Falcon MS, Perez-Lamela C, Martinez-Carballo E, Simal-Gandara J (2007) Determination of phenolic compounds in wines: influence of bottle storage of young red wines on their evolution. Food Chem 105:248–259

    Article  CAS  Google Scholar 

  16. Pardo F, Salinas MR, Alonso GL, Navarro G, Huerta MD (1999) Effect of diverse enzyme preparations on the extraction and evolution of phenolic compounds in red wines. Food Chem 67:135–142

    Article  CAS  Google Scholar 

  17. Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  CAS  Google Scholar 

  18. Faller ALK, Fialho E (2010) Polyphenol content and antioxidant capacity in organic and conventional plant foods. J Food Compost Anal 23:561–568

    Article  CAS  Google Scholar 

  19. Gao Z-J, Liu J-B, Xiao X-G (2011) Purification and characterisation of polyphenol oxidase from leaves of Cleome gynandra L. Food Chem 129:1012–1018

    Article  CAS  Google Scholar 

  20. Danilewicz JC (2003) Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: central role of iron and copper. Am J Enol Vitic 54:73–85

    CAS  Google Scholar 

  21. Fulcrand H, Duenas M, Salas E, Cheynier V (2006) Phenolic reactions during winemaking and aging. Am J Enol Vitic 57:289–297

    CAS  Google Scholar 

  22. Aydemir T (2004) Partial purification and characterization of polyphenol oxidase from artichoke (Cynara scolymus L.) heads. Food Chem 87:59–67

    Article  CAS  Google Scholar 

  23. Gawlik-Dziki U, Szymanowska U, Baraniak B (2007) Characterization of polyphenol oxidase from broccoli (Brassica oleracea var. botrytis italica) florets. Food Chem 105:1047–1053

    Article  CAS  Google Scholar 

  24. Whitmore L, Wallace BA (2012) On-line analysis for protein circular dichroism spectra. URL http://dichroweb.cryst.bbk.ac.uk/html/home.shtml. Accessed 12 June 2012

  25. Whitmore L, Woollett B, Miles AJ, Janes RW, Wallace BA (2010) The protein circular dichroism data bank, a web-based site for access to circular dichroism spectroscopic data. Structure 18:1267–1269

    Article  CAS  Google Scholar 

  26. Perez-Jimenez J, Arranz S, Saura-Calixto F (2009) Proanthocyanidin content in foods is largely underestimated in the literature data: an approach to quantification of the missing proanthocyanidins. Food Res Int 42:1381–1388

    Article  CAS  Google Scholar 

  27. Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230

    Article  CAS  Google Scholar 

  28. Inbaraj BS, Lu H, Kao TH, Chen BH (2010) Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC–DAD–ESI–MS. J Pharm Biomed Anal 51:549–556

    Article  CAS  Google Scholar 

  29. Plessi M, Bertelli D, Miglietta F (2006) Extraction and identification by GC–MS of phenolic acids in traditional balsamic vinegar from Modena. J Food Compost Anal 19:49–54

    Article  CAS  Google Scholar 

  30. Gruz J, Novak O, Strnad M (2008) Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem 111:789–794

    Article  CAS  Google Scholar 

  31. Rak G, Fodor P, Abranko L (2010) Three-step HPLC–ESI–MS/MS procedure for screening and identifying non-target flavonoid derivatives. Int J Mass Spectrom 290:32–38

    Article  CAS  Google Scholar 

  32. Verardo V, Arraez-Roman D, Segura-Carretero A, Marconi E, Fernandez-Gutierrez A, Caboni MF (2010) Identification of buckwheat phenolic compounds by reverse phase high performance liquid chromatography-electrospray ionization-time of flight-mass spectrometry (RP–HPLC–ESI–TOF–MS). J Cereal Sci 52:170–176

    Article  CAS  Google Scholar 

  33. Palma-Orozco G, Ortiz-Moreno A, Dorantes-Alvarez L, Sampedro JG, Najera H (2011) Purification and partial biochemical characterization of polyphenol oxidase from mamey (Pouteria sapota). Phytochemistry 72:82–88

    Article  CAS  Google Scholar 

  34. Sacchi KL, Bisson LF, Adams DO (2005) A review of the effect of winemaking techniques on phenolic extraction in red wines. Am J Enol Vitic 56:197–206

    CAS  Google Scholar 

  35. Xie DY, Dixon RA (2005) Proanthocyanidin biosynthesis–still more questions than answers? Phytochemistry 66:2127–2144

    Article  CAS  Google Scholar 

  36. S-f Xu, Zou B, Yang J, Yao P, C-m Li (2012) Characterization of a highly polymeric proanthocyanidin fraction from persimmon pulp with strong Chinese cobra PLA(2) inhibition effects. Fitoterapia 83:153–160

    Article  Google Scholar 

  37. Gómez-Plaza E, Cano-López M (2011) A review on micro-oxygenation of red wines Claims, benefits and the underlying chemistry. Food Chem 125:1131–1140

    Article  Google Scholar 

  38. Ling Z, Xie B (2002) Effects of procyanidins extract from the lotus seedpod on reactive oxygen species and lipid peroxidation. Acta Nutrimenta Sinica 24:121–125

    CAS  Google Scholar 

  39. Aceituno FF, Orellana M, Torres J, Mendoza S, Slater AW, Melo F, Agosin E (2012) Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions. Appl Environ Microbiol 78:8340–8352

    Article  CAS  Google Scholar 

  40. Haslam E, Lilley TH, Warminski E, Liao H, Cai Y, Martin R, Gaffney SH, Goulding PN, Luck G (1992) Polyphenol complexation—a study in molecular recognition. ACS Symp Ser 506:8–50

    Article  CAS  Google Scholar 

  41. Dahl R, Henriksen JM, Harving H (1986) Red wine asthma—a controlled challenge study. J Allergy Clin Immunol 78:1126–1129

    Article  CAS  Google Scholar 

  42. Sonni F, Cejudo Bastante MJ, Chinnici F, Natali N, Riponi C (2009) Replacement of sulfur dioxide by lysozyme and oenological tannins during fermentation: influence on volatile composition of white wines. J Sci Food Agric 89:688–696

    Article  CAS  Google Scholar 

  43. Marchal R, Chaboche D, Douillard R, Jeandet P (2002) Influence of lysozyme treatments on Champagne base wine foaming properties. J Agric Food Chem 50:1420–1428

    Article  CAS  Google Scholar 

  44. Vally H, Thompson PJ (2001) Role of sulfite additives in wine induced asthma: single dose and cumulative dose studies. Thorax 56:763–769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Project No. 31301578); the Natural Science Foundation of Jiangxi Province (Project No. 20132BAB214002); the Science Foundation of Jiangxi provincial department of education (Project No. GJJ13024); the Free Exploration and the Research Program of State Key Laboratory of Food Science and Technology, Nanchang University (Project No. SKLF-TS-200921 and SKLF-MB-201003). All the authors would like to thank for these financial support. Also, the authors would like to thank Dr Deming Gong for editing the manuscript.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-yuan Deng.

Additional information

Xiao-ru Liu and Ru-peng Xie have contributed equally to this work; they are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Xr., Xie, Rp., Fan, Yw. et al. Polymerization of proanthocyanidins catalyzed by polyphenol oxidase from lotus seedpod. Eur Food Res Technol 238, 727–739 (2014). https://doi.org/10.1007/s00217-013-2114-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-2114-7

Keywords

Navigation