Skip to main content
Log in

Effects of diet on casein and fatty acid profiles of milk from goats differing in genotype for αS1-casein synthesis

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study investigated the interactions between nutrition and the genotype at αS1-CN loci (CSN1S1) in goats, evaluating the impact of fresh forage-based diets and an energy supplement on the casein and fatty acid (FA) profiles of milk from Girgentana goats. Twelve goats were selected for having the same genotype at the αS2-CN, β-CN, and κ-CN loci and differing in the CSN1S1 genotype: homozygous for strong alleles (AA) or heterozygous for strong and weak alleles (AF). Goats of each genotype were divided into three groups and, according to a 3 × 3 Latin square design, fed ad libitum three diets: sulla fresh forage (SFF), SFF plus 800 g/day of barley (SFB), and mixed hay plus 800 g/day of barley (MHB). The SFB diet led to higher-energy intake and milk yield. The energy-supplemented diets (SFB, MHB) reduced milk fat and urea and increased coagulation time. The fresh forage diets (SFF, SFB) increased dry matter (DM) and crude protein (CP) intake and milk β-CN. Diet had a more pronounced effect than CSN1S1 genotype on milk FA profile, which was healthier from goats fed the SFF diet, due to the higher content of rumenic acid, polyunsaturated, and omega-3 FAs. The AA milk had longer coagulation time and higher curd firmness, higher short- and medium-chain FAs (SMFA), and lower oleic acid than AF milk. Significant diet by genotype interactions indicated the higher milk yield of AA goats than AF goats with the higher-energy SFB diet and the lower synthesis of SMFA in AF than in AA goats with the SFF diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clark S, Sherbon JW (2000) AlphaS1-casein, milk composition and coagulation properties of goat milk. Small Rumin Res 38:123–134

    Article  Google Scholar 

  2. Sacchi P, Chessa S, Budelli E, Bolla P, Ceriotti G, Soglia D, Rasero R, Cauvin E, Caroli A (2005) Casein haplotype structure in five Italian goat breeds. J Dairy Sci 88:1561–1568

    Article  CAS  Google Scholar 

  3. Moioli B, D’Andrea M, Pilla F (2007) Candidate genes affecting sheep and goat milk quality. Small Rumin Res 68:179–192

    Article  Google Scholar 

  4. Grosclaude F, Mahé MF, Brignon G, Di Stasio L, Jeunet R (1987) A Mendelian polymorphism underlying quantitative variations of goat alphas1-casein. Genet Sel Evol 19:399–412

    Article  CAS  Google Scholar 

  5. Chilliard Y, Rouel J, Leroux C (2006) Goats alpha-S1-casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios. Anim Feed Sci Technol 131:474–487

    Article  CAS  Google Scholar 

  6. Valenti B, Pagano RI, Pennisi P, Avondo M (2009) The role of polymorphism at αs1-casein locus on milk fatty acid composition in Girgentana goat. Ital J Anim Sci 8(suppl. 2):441–443

    Google Scholar 

  7. Schmidely P, Meschy F, Tessier J, Sauvant D (2002) Lactation response and nitrogen, calcium and phosphorus utilization of dairy goats differing by the genotype for alphaS1-casein in milk, and fed diets varying in crude protein concentration. J Dairy Sci 85:2299–2307

    Article  CAS  Google Scholar 

  8. De la Torre Adarve G, Serradilla JM, Gil Extremera F, Sanz Sampelayo MR (2008) Nutritional utilization in Malagueňa dairy goats differing in genotypes for the content of aS1-casein in milk. J Dairy Sci 91:2443–2448

    Article  Google Scholar 

  9. De la Torre Adarve G, Ramos Morales E, Serradilla JM, Gil Extremera F, Sanz Sampelayo MR (2009) Milk production and composition in Malagueňa dairy goats. Effect of genotype for synthesis of aS1-casein on milk production and its interaction with dietary protein content. J Dairy Sci 76:137–143

    Google Scholar 

  10. Pagano RI, Pennisi P, Valenti B, Lanza M, Di Trana A, Di Gregorio P, De Angelis A, Avondo M (2010) Effect of CSN1S1 genotype and its interaction with diet energy level on milk production and quality in Girgentana goats fed ad libitum. J Dairy Res 77:245–251

    Article  CAS  Google Scholar 

  11. Bonanno A, Di Grigoli A, Di Trana A, Di Gregorio P, Tornambè G, Bellina V, Claps S, Maggio G, Todaro M (2013) Influence of fresh forage-based diets and αS1-casein (CSN1S1) genotype on nutrient intake and productive, metabolic, and hormonal responses in milking goats. J Dairy Sci 96:2107–2117

    Article  CAS  Google Scholar 

  12. Bonanno A, Di Grigoli A, Vargetto D, Tornambè G, Di Miceli G, Giambalvo D (2007) Grazing sulla and/or ryegrass forage for 8 or 24 hours daily. Effects on ewes feeding behaviour. In: De Vliegher A, Carlier L (eds) Permanent and temporary grassland plant, environment and economy. European Grassland Federation. Ghent, Belgium, pp 208–211

  13. Bonanno A, Di Grigoli A, Stringi L, Di Miceli G, Giambalvo D, Tornambè G, Vargetto D, Alicata ML (2007) Intake and milk production of goats grazing sulla forage under different stocking rates. Ital J Anim Sci 6(Suppl. 1):605–607

    Google Scholar 

  14. Molle G, Decandia M, Giovannetti V, Cabiddu A, Fois N, Sitzia M (2009) Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 1: effects on feeding behaviour, intake, diet digestibility and performance. Livest Sci 123:138–146

    Article  Google Scholar 

  15. Ramunno L, Cosenza G, Pappalardo M, Longobardi E, Gallo D, Pastore N, Di Gregorio P, Rando A (2001) Characterization of two new alleles at the goat CSN1S2 locus. Anim Genet 32:264–268

    Article  CAS  Google Scholar 

  16. Cosenza G, Illario R, Rando A, Di Gregorio P, Masina P, Ramunno L (2003) Molecular characterization of the goat CSN1S1(01) allele. J Dairy Res 70:237–240

    Article  CAS  Google Scholar 

  17. Caroli A, Chiatti F, Chessa S, Rignanese D, Bolla P, Pagnacco G (2006) Focusing on the goat casein complex. J Dairy Sci 89:3178–3187

    Article  CAS  Google Scholar 

  18. Gigli I, Maizon DO, Riggio V, Sardina MT, Portolano B (2008) Casein haplotype variability in Sicilian dairy goat breeds. J Dairy Sci 91:3687–3692

    Article  CAS  Google Scholar 

  19. AOAC (1995) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  20. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  Google Scholar 

  21. National Research Council (NRC) (2001) Nutrient requirements of dairy cattle. 7th rev. edn. National Academy Press, Washington, DC

  22. Porter LJ, Hrstick LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyniadin and delphinidin. Phytochemistry 25:223–230

    Article  CAS  Google Scholar 

  23. Tava A, De Benedetto MG, Tedesco D, Di Miceli G, Piluzza G (2005) Proanthocyanidins from Hedysarum, Lotus and Onobrychis spp. growing in Sardinia and Sicily and their antioxidant activity. In: Proceedings of the 20th international grassland congress. Dublin, Ireland, pp 271

  24. Zannoni M, Annibaldi S (1981) Standardization of the renneting ability of milk by Formagraph. Sci Tecn Latt Cas 32:79–94

    Google Scholar 

  25. Bonizzi I, Buffoni JN, Feligini M (2009) Quantification of bovine casein fractions by direct chromatographic analysis of milk. Approaching the application to a real production context. J Chromatog A 1216:165–168

    Article  CAS  Google Scholar 

  26. Loor JJ, Herbein JH, Polan CE (2002) Trans 18:1 and 18:2 isomers in blood plasma and milk fat of grazing cows fed a grain supplement containing solvent-extracted or mechanically extracted soybean meal. J Dairy Sci 85:1197–1207

    Article  CAS  Google Scholar 

  27. Chen S, Bobe G, Zimmerman S, Hammond EG, Luhman CM, Boylston TD, Freeman AE, Beitz DC (2004) Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J Agric Food Chem 52(11):3422–3428

    Article  CAS  Google Scholar 

  28. SAS (2004) SAS/STAT qualification tools user’s guide (ver. 9.1.2). Statistical Analysis System Institute, Cary, NC

  29. Bonanno A, Finocchiaro R, Di Grigoli A, Sardina MT, Tornambè G, Gigli I (2007c) Energy intake effects at pasture on milk production and coagulation properties in Girgentana goats with different aS1-casein genotypes. In: Proceedings of the international symposium of Int. Goat Ass. (IGA), The quality of goat products, models and tools for evaluation and promotion, Bella, Italy, pp 191–194

  30. Molle G, Decandia M, Fois N, Ligios S, Cabiddu A, Sitzia M (2003) The performance of Mediterranean dairy sheep given access to sulla (Hedysarum coronarium L.) and annual ryegrass (Lolium rigidum Gaudin) pastures in different time proportions. Small Rumin Res 49:319–328

    Article  Google Scholar 

  31. Burke JL, Waghorn GC, McNabb WC, Brookes IM (2004) The potential of sulla in pasture-based system. Proc Austr Soc Anim Prod 25:25–28

    Google Scholar 

  32. Harmeyer J, Martens H (1980) Aspects of urea metabolism in ruminants with reference to the goat. J Dairy Sci 63:1707–1728

    Article  CAS  Google Scholar 

  33. Amato G, Di Miceli G, Giambalvo D, Scarpello C, Stringi L (2005) Condensed tannins content in sulla (Hedysarum coronarium L.) as affected by environment, genotype and growth stage. In: Bullitta S (ed) Bioactive compounds in pasture species for phytotherapy and animal welfare. Cnr-Ispaam, Sassari, pp 41–54

  34. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants feed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19

    Article  CAS  Google Scholar 

  35. Todaro M, Scatassa ML, Giaccone P (2005) Multivariate factor analysis of Girgentana goat milk composition. Ital J Anim Sci 4:403–410

    Google Scholar 

  36. Bertoni G, Calamari L, Maianti MG (2001) Producing specific milks for speciality cheeses. Proc Nutr Soc 60(231):246. doi:10.1079/PNS200080

    Google Scholar 

  37. Bonanno A, Di Grigoli A, Sardina MT, Tornambè G (2009) Feed intake, milk composition and cheesemaking properties in Girgentana grazing goats with different genotype at αS1-casein and κ-casein. Ital J Anim Sci 8(suppl. 2):453

    Google Scholar 

  38. Avondo M, Pagano RI, Guastella AM, Crescione A, Di Gloria M, Valenti B, Lutri L, Pennisi P (2009) Effects of goats’ alpha-S1 casein genotype on diet selection in a free choice feeling system. Options Mèditerranèennes, Séries A 85:367–371

    Google Scholar 

  39. Valenti B, Pagano RI, Avondo M (2011) Effect of diet at different energy levels on milk casein composition of Girgentana goats differing in CSN1S1 genotype. Small Rumin Res 105:135–139

    Article  Google Scholar 

  40. Bencini R (2002) Factors affecting the clotting properties of sheep milk. J Sci Food Agric 82:705–719

    Article  CAS  Google Scholar 

  41. Caravaca F, Amills A, Jordana J, Angiolillo A, Agüera P, Aranda C, Menéndez-Buxadera A, Sánchez A, Carrizosa J, Urrutia B, Sànchez A, Serradilla JM (2008) Effect of αs1-casein (CSN1S1) genotype on milk CSN1S1 content in Malagueña and Murciano-Granadina goats. J Dairy Res 75:481–484

    Article  CAS  Google Scholar 

  42. Vlaeminck B, Fievez V, Cabrita ARJ, Fonseca AJM, Dewhurst RJ (2006) Factors affecting odd- and branched-chain fatty acids in milk: a review. Anim Feed Sci Technol 131:389–417

    Article  CAS  Google Scholar 

  43. Cabiddu A, Decandia M, Addis M, Piredda G, Pirisi A, Molle G (2005) Managing Mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Rumin Res 59:169–180

    Article  Google Scholar 

  44. Cabiddu A, Molle G, Decandia M, Spada S, Fiori M, Piredda G, Addis M (2009) Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: effects on milk fatty acid profile. Livest Sci 123(2–3):230–240

    Article  Google Scholar 

  45. Antongiovanni M, Buccioni A, Petacchi F, Secchiari P, Mele M, Serra A (2003) Upgrading the lipid fraction of foods of animal origin by dietary means: rumen activity and presence of trans fatty acids and CLA in milk and meat. Ital J Anim Sci 2:3–28

    Google Scholar 

  46. Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109:828–855

    Article  CAS  Google Scholar 

  47. Parodi PW (1999) Conjugated linoleic acid and other anticarcinogenic agents of bovine milk. J Dairy Sci 82:1339–1349

    Article  CAS  Google Scholar 

  48. Banni S, Murru E, Angioni E, Carta G, Melis M (2002) Conjugated linoleic acid isomers (CLA): good for everything? Sci Aliments 22(4):371–380

    Article  CAS  Google Scholar 

  49. Bauman DE, Mather IH, Wall RJ, Lock AL (2006) Major advances associated with the biosynthesis of milk. J Dairy Sci 89:1235–1243

    Article  CAS  Google Scholar 

  50. Dewhurst RJ, Shingfield KJ, Lee MRF, Scollan ND (2006) Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim Feed Sci Technol 131:168–206

    Article  CAS  Google Scholar 

  51. Todaro M, Di Grigoli A, Tornambè G, Di Gregorio P, Giaccone P, Bonanno A (2010) Influenza del genotipo per l’alfa (S1)-caseina sulla qualità del latte di capre Maltesi (Effect of alpha-s1 casein genotype on milk quality characteristics). XIX Congresso Nazionale S.I.P.A.O.C, Large Anim Rev (5):109

  52. Valenti B, Pagano RI, Pennisi P, Lanza M, Avondo M (2010) Polymorphism at αs1-casein locus. Effect of genotype diet × interaction on milk fatty acid composition in Girgentana goat. Small Rumin Res 94:210–213

    Article  Google Scholar 

  53. Leroux C, Le Provost F, Petit E, Bernard L, Chilliard Y, Martin P (2004) Real-time RT-PCR and cDNA macro-array to study the impact of the genetic polymorphism at the aS1-casein locums on the expression of genes in the goat mammary gland during lactation. Reprod Nutr Dev 43:459–469

    Article  Google Scholar 

  54. Ollier S, Chauvet S, Martin P, Chilliard Y, Leroux C (2008) Goat’s αS1-casein polymorphism affects gene expression profile of lactating mammary gland. Animal 2(4):473–566

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Italian Ministry of Education, University and Research (MIUR) (Project of High National Interest PRIN 2007B4JBWN “Genetic polymorphism of caseins in goats. Effects of feeding on milk production and quality, feed intake, metabolic and hormonal responses in goats at different genetic potential to produce casein”).

Conflict of interest

None.

Compliance with Ethics Requirements

During the experiment, the goats were managed according to the guidelines for accommodation and care of experimental animals of the European Union Directive 86/609/EEC and the recommendation of the Commission of the European Communities 2007/526/EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Bonanno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonanno, A., Di Grigoli, A., Montalbano, M. et al. Effects of diet on casein and fatty acid profiles of milk from goats differing in genotype for αS1-casein synthesis. Eur Food Res Technol 237, 951–963 (2013). https://doi.org/10.1007/s00217-013-2069-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-2069-8

Keywords

Navigation