Skip to main content
Log in

Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Saponins are triterpenic or steroidal glycosides present in many plants, as juá (Ziziphus joazeiro) and sisal (Agave sisalana), representatives of the Brazilian agrobiodiversity. Due to their properties, saponins are finding application in fine chemistry and pharmaceutical industry. Thus, the study of the extraction of these components from their natural matrixes and their optimization is of interest. The objective of this work is to evaluate the performance of the extraction of saponins from juá and sisal, using cholinium salts and deep eutectic solvents (DES) as adjuvants to aqueous and hydroalcoholic solutions. The goal is to simultaneously optimize the saponin extraction efficiency and the selectivity between saponins and phenolic compounds from these two plant matrixes. For this purpose, 13 cholinium-based ionic liquids and salts and 9 DES were used as adjuvants. It was observed that DES performed better in the proposed extractions and the optimal extraction mixture composition was determined using a mixture-design statistic method. Using this information, other experimental parameters, such as extraction time, raw material/solvent ratio and temperature were also evaluated and optimized. In the end, we show that it is possible to increase the extraction efficiency and selectivity of saponins from juá in 170 % and 18.39 and for sisal 245 % and 10.34, respectively, by the addition of a selected DES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferro AFP, Bonacelli MBM, Assad ALD (2006) Oportunidades tecnológicas e estratégias concorrenciais de gestão ambiental: O uso sustentável da biodiversidade brasileira. Gest Prod 13:489–501

    Article  Google Scholar 

  2. Rodrigues MG (2009) A pesquisa para a Conservação da Biodiversidade no Brasil: a ecologia a partir de um enfoque interdisciplinar. PhD Thesis. Política Científica e Tecnológica, UNICAMP, Campinas

  3. Barbosa-Filho JM, Trigueiro JA, Cheriyan UO, Bhattacharyya J (1985) Constituents of stem-bark of Zizyphus joazeiro. J Nat Prod 48:152–153

    Article  CAS  Google Scholar 

  4. Barbosa-Filho JM (1997) Quimiodiversidade e potencialidade farmacológica da flora paraibana. Cad Farm 13:85–102

    Google Scholar 

  5. Higuchi R, Kubota S, Komori T, Kawasaki T, Pandey VB, Singh JP, Shah AH (1984) Triterpenoid saponins from the bark of Zizyphus joazeiro. Phytochemistry 23:2597–2600

    Article  CAS  Google Scholar 

  6. Schühly W, Heilmann J, Çalis I, Sticher O (2000) Novel triterpene saponins from Zizyphus joazeiro. Helv Chim Acta 83:1509–1516

    Article  Google Scholar 

  7. Ding Y, Chen YY, Wang DZ, Yang CR (1989) Steroidal saponins from a cultivated form of Agave sisalana. Phytochemistry 28(10):2787–2791

    Article  CAS  Google Scholar 

  8. Ding Y, Tian RH, Yang CR, Chen YY, Nohara T (1993) Two new steroidal saponins from dried fermented residues of leaf-juices of Agave sisalana forma Dong no. 1. Chem Pharm Bull 41(3):5557–5560

    Article  Google Scholar 

  9. Stewart D, Azzini A, Hall AT, Morrison IM (1997) Sisal fibres and their constituent non-cellulosic polymers. Ind Crops Prod 6:17–26

    Article  CAS  Google Scholar 

  10. Oashi MCG (1999) Estudo da Cadeia Produtiva como Subsídio para P & D do Agronegócio do Sisal na Paraíba. DSc Thesis. Federal University of Santa Catarina, Florianópolis, Brazil

  11. Pizarro APB, Oliveira Filho AM, Parente JP, Melo MTV, Santos CE, Lima PR (1999) O aproveitamento do resíduo da indústria do sisal no controle de larvas de mosquitos. Rev Soc Bras Med Trop 32(1):23–29

    Article  CAS  Google Scholar 

  12. Zou P, Fu J, Yu HS, Zhang J, Kang LP, Ma BP, Yan XZ (2006) The NMR studies on two new furostanol saponins from Agave sisalana leaves. Magn Reson Chem 44:1090–1095

    Article  CAS  Google Scholar 

  13. Chen PY, Kuo YC, Chen CH, Kuo YH, Lee CK (2009) Isolation and immunomodulatory effect of homoisoflavones and flavones from Agave sisalana Perrine ex Engelm. Molecules 14:1789–1795

    Article  CAS  Google Scholar 

  14. Martin AR, Martins MA, Mattoso LHC, Silva ORRF (2009) Caracterização química e estrutural de fibra de sisal da variedade Agave sisalana. Pol Ciênc Tecnol 19(1):40–46

    CAS  Google Scholar 

  15. Kalinowska M, Zimowski J, Paczkowski C, Wojciechowski ZA (2005) The formation of sugar chains in triterpenoid saponins and glycoalkaloids. Phytochem Rev 4:237–257

    Article  CAS  Google Scholar 

  16. Oleszek WA (2000) Saponins. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Raton, pp 295–324

    Google Scholar 

  17. Güçlü-Üstündag Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47(3):231–258

    Article  Google Scholar 

  18. Sparg SG, Light ME, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  Google Scholar 

  19. Vincken JP, Heng L, De Groot A, Gruppen H (2007) Saponins, classification and occurrence in plant kingdom. Phytochemistry 68:275–297

    Article  CAS  Google Scholar 

  20. Liu J, Henkel T (2002) Traditional Chinese medicine (TCM): are polyphenols and saponins the key ingredients triggering biological activities? Curr Med Chem 9:1483–1485

    Article  CAS  Google Scholar 

  21. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  22. Wassercheid P, Welton T (2008) Ionic liquids in synthesis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  23. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670

    Article  Google Scholar 

  24. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1–56

    Article  CAS  Google Scholar 

  25. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403

    Article  CAS  Google Scholar 

  26. Liu QP, Hou XD, Li N, Zong MH (2012) Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass. Green Chem 14:304–307

    Article  CAS  Google Scholar 

  27. Fukaya Y, Iizuka Y, Sekikawa K, Ohno H (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9:1155–1157

    Article  CAS  Google Scholar 

  28. Imperato G, König B, Chiappe C (2007) Ionic green solvents from renewable resources. Eur J Org Chem 2007(7):1049–1058

    Article  Google Scholar 

  29. Pernak J, Syguda A, Mirska I, Pernak A, Nawrot J, Pradzynska A, Griffin ST, Rogers RD (2007) Choline-derivative-based ionic liquids. Chem A Eur J 13:6817–6827

    Article  CAS  Google Scholar 

  30. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 2003(1):70–71

    Article  Google Scholar 

  31. Shahbaz K, Mjalli FS, Hashima MA, Al-Nashef IM (2011) Prediction of deep eutectic solvents densities at different temperatures. Thermochim Acta 515:67–72

    Article  CAS  Google Scholar 

  32. Maugeri Z, De María PD (2012) Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv 2:421–425

    Article  CAS  Google Scholar 

  33. Petkovic M, Ferguson JL, Gunaratne HQN, Ferreira R, Leitão MC, Seddon KR, Rebelo LPN, Pereira CS (2010) Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem 12:643–649

    Article  CAS  Google Scholar 

  34. Makkar HPS, Siddhuraju P, Becker K (2007) Methods in molecular biology, vol 393: plant secondary metabolites. Humana Press, Totowa

    Book  Google Scholar 

  35. Deng CJ, Nie FH (2008) Extraction of steroidal saponins from sisal hemp by supercritical CO2. Food Res Dev 2:41–44

    Google Scholar 

  36. Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications, Oxford

    Google Scholar 

  37. Calado V, Montgomery DC (2003) Planejamento de Experimentos usando o Statistica. E-papers Serviços Editoriais, Rio de Janeiro

    Google Scholar 

  38. Rodrigues MI, Iemma AF (2005) Planejamento de Experimentos e Otimização de Processos. Casa do Pão Editora, Campinas

    Google Scholar 

Download references

Acknowledgments

The authors thank Brazilian funding agencies, FAPERJ, CAPES and CNPq for financial support and scholarship. I. M. Marrucho acknowledges FCT/MCTES (Portugal) for a contract under Programa Ciência 2007. We also wish to thank the Fundação para a Ciência e Tecnologia for Project PTDC/EQU-FTT/116015/2009.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernardo Dias Ribeiro or Isabel M. Marrucho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, B.D., Coelho, M.A.Z. & Marrucho, I.M. Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. Eur Food Res Technol 237, 965–975 (2013). https://doi.org/10.1007/s00217-013-2068-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-2068-9

Keywords

Navigation