Skip to main content
Log in

Physiological features of Schizosaccharomyces pombe of interest in making of white wines

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This work studies the physiology of Schizosaccharomyces pombe strain 938 in the production of white wine with high malic acid levels as the sole fermentative yeast, as well as in mixed and sequential fermentations with Saccharomyces cerevisiae Cru Blanc. The induction of controlled maloalcoholic fermentation through the use of Schizosaccharomyces spp. is now being viewed with much interest. The acetic, malic and pyruvic acid concentrations, relative density and pH of the musts were measured over the entire fermentation period. In all fermentations in which Schizo. pombe 938 was involved, nearly all the malic acid was consumed and moderate acetic concentrations produced. The urea content and alcohol level of these wines were notably lower than in those made with Sacch. cerevisiae Cru Blanc alone. The pyruvic acid concentration was significantly higher in Schizo. pombe fermentations. The sensorial properties of the different final wines varied widely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gallander JF (1977) Deacidification of eastern table wines with Schizosaccharomyces pombe. Am J Enol Vitic 28:65–72

    CAS  Google Scholar 

  2. Pitt JI, Hocking AD (1999) Fungi and food spoilage. An Aspen Publication, Gaithersburg, pp 459–460

    Google Scholar 

  3. Yokotsuka K, Otaki A, Naitoh H (1993) Controlled simultaneous deacidification and alcohol fermentation of a high-acid grape must using two immobilized yeasts, Schizosaccharomyces pombe and Saccharomyces cerevisiae. Am J Enol Vitic 44:371–377

    CAS  Google Scholar 

  4. Peynaud E, Sudraud P (1962) Utilisation de l’effet dèsacidifiant des Schizosaccharomyces en vinification de raisins acides. Technol Agric 13:309–328

    Google Scholar 

  5. Suárez-Lepe JA, Leal I (2004) Microbiología enológica: fundamentos de vinificación, 3rd edn. Mundi-Prensa, Madrid, pp 346–355

    Google Scholar 

  6. Wibowo D, Eschenbruch R, Davis CR, Fleet GH, Lee TH (1985) Occurrence and growth of lactic bacteria in wine. Am J Enol Vitic 36:302–313

    CAS  Google Scholar 

  7. Henick-Kling T (1993) In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Switzerland, pp 289–326

  8. Suárez-Lepe JA, Palomero F, Benito S, Calderón F, Morata A (2012) Oenological versatility of Schizosaccharomyces spp. Eur Food Res Technol. doi:10.1007/s00217-012-1785-9

  9. Pretorius IS, Bauer FF (2002) Meeting the consumer challenge through genetically customized wine-yeast strains. Trends Biotechnol 20:426–432

    Article  CAS  Google Scholar 

  10. Husnik JL, Volschenk H, Bauer J (2006) Metabolic engineering of malolactic wine yeast. Metabol Eng 8:315–323

    Article  CAS  Google Scholar 

  11. Husnik JL, Delaquis PJ, Cliff MA (2007) Functional analyses of the malolactic wine yeast ML01. Am J Enol Vitic 58:42–52

    CAS  Google Scholar 

  12. Liu YL, Li H (2009) Integrated expression of the Oenococcus oeni mleA gene in Saccharomyces cerevisiae. Agric Sci China 8:821–827

    Article  Google Scholar 

  13. Palomero F, Morata A, Benito S, Calderón F, Suárez-Lepe JA (2009) New genera of yeasts for over-lees aging of red wine. Food Chem 112:432–441

    Article  CAS  Google Scholar 

  14. Deák T (2008) Handbook of food spoilage yeasts, 2nd edn. CRC Press. Taylor and Francis Group, Boca Raton, pp 294–297

    Google Scholar 

  15. Benito S, Palomero P, Morata A, Calderón F, Suárez-Lépe JA (2012) New applications for Schizosaccharomyces pombe in the alcoholic fermentation of red wines. Int J Food Sci Technol. doi:10.1111/j.1365-2621.2012.03076.x

    Google Scholar 

  16. Uthurry C, Varela F, Colomo B, Suárez-Lepe JA, Lombardero J, García del Hierro JR (2004) Ethyl carbamate concentrations of typical Spanish red wines. Food Chem 88:329–336

    Article  CAS  Google Scholar 

  17. Magyar I, Panik I (1989) Biological deacidification of wine with Schizosaccharomyces pombe entrapped in ca-alginate gel. Am J Enol Vitic 40:233–240

    CAS  Google Scholar 

  18. Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  CAS  Google Scholar 

  19. Kim DH, Hong YA, Park HD (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotech Lett 30:1633–1638

    Article  CAS  Google Scholar 

  20. Kunicka-Styczynska A (2009) Glucose, L-Malic acid and pH effect on fermentation products in biological deacidification. Czech J Food Sci 27:319–322

    Google Scholar 

  21. Silva S, Ramon Portugal F, Andrade P, Texera M, Strehaino P (2003) Malic acid consumption by dry immobilized cells of Schizosaccharomyces pombe. Am J Enol Vitic 54:50–55

    CAS  Google Scholar 

  22. Rossini G (1993) Influence of sugar type and level on malate metabolism of immobilized Schizosaccharomyces pombe cells. Am J Enol Vitic 44:113–117

    Google Scholar 

  23. López-Toledano A, Mérida J, Medina M (2007) Colour correction in white wines by use of immobilized yeast on kappa-carragenate and alginate gels. Eur Food Res Technol 225:879–885

    Article  Google Scholar 

  24. Unterholzner O, Aurich M, Platter K (1988) Geschmacks und Geruchsfehler bei Rotweinen verursacht durch Schizosaccharomyces pombe L. Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Früchteverwertung 38:66–70

  25. Thornton RJ, Rodríguez SB (1996) Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions. Food Microbiol 13:475–482

    Article  CAS  Google Scholar 

  26. Bely M, Stoeckle P, Masneuf-Pomarede I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckiiSaccharomyces cerevisiae culture on high sugar fermentation. Int J Food Microbiol 122:312–320

    Article  CAS  Google Scholar 

  27. Anfang N, Brajkovich M, Goddard MR (2009) Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Savignon Blanc. Aust J Grape Wine Res 15:1–8

    Article  CAS  Google Scholar 

  28. Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled and mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133

    Article  CAS  Google Scholar 

  29. Snow PG, Gallander JF (1979) Deacidification of white table wines trough partial fermentation with Schizosaccharomyces pombe. Am J Enol Vitic 30:45–48

    CAS  Google Scholar 

  30. Dharmadhikari MR, Wilker KL (1998) Deacidification of high malate must with Schizosaccharomyces pombe. Am J Enol Vitic 49:408–412

    CAS  Google Scholar 

  31. Sousa MJ, Mota M, Leâo C (1995) Effects of ethanol and acetic acid on the transport of malic acid and glucose in the yeast Schizosaccharomyces pombe: implications in wine deacidification. FEMS Microbiol Lett 126:197–202

    Article  CAS  Google Scholar 

  32. Sampaio TL, Kennedy A, Vasconcelos MC (2007) Use of microscale fermentations in grape and wine research. Am J Enol Vitic 58(4):534–539

    CAS  Google Scholar 

  33. OIV (2012) Official methods for the analysis of musts and wines of the international organisation of vine and wine (OIV). Methods of analysis of wines and musts. (OIV-MA-INT-00-2012). http://www.oiv.int/oiv/info/enmethodesinternationalesvin

  34. Côrte-Real M, Leaô C, Van Uden N (1989) Transport of L-malic acid and other dicarboxylic acids in the yeast Candida sphaerica. Appl Microbiol Biotech 31:551–555

    Article  Google Scholar 

  35. Côrte-Real M, Leâo C (1990) Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Appl Environ Microbiol 56:1109–1113

    Google Scholar 

  36. Rodriguez SB, Thornton RJ (1990) Factors influencing the utilisation of L-malate by yeasts. FEMS Microbiol Lett 72:17–22

    CAS  Google Scholar 

  37. Redzepovic S, Orlic S, Majdak A, Kozima B, Volschenk H, Viljoen-Bloom M (2003) Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int J Food Microbiol 83:49–61

    Article  CAS  Google Scholar 

  38. Taillandier P, Gilis M, Strehaino P (1995) Deacidification by Schizosaccharomyces: interactions with Saccharomyces. J Biotechnol 40:199–205

    Article  CAS  Google Scholar 

  39. Gao C, Fleet GH (1995) Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiol 12:65–71

    Article  CAS  Google Scholar 

  40. De Fátima M, Centeno F, Palacios A (2007) Desacidificación Biológica de mosto a través de la inoculación de levadura Schizosaccharomyces pombe encapsulada como alternativa a la no producción de aminas biógenas. In: International symposium of microbiology and food safety in wine “Microsafetywine”. Villafranca del Penedés, Spain 20–21 November 2007

  41. Morata A, Gómez-Cordovés MC, Colomo B, Suárez JA (2003) Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: relationship with vitisin A and B formation in red wines. J Agric Food Chem 51:7402–7409

    Article  CAS  Google Scholar 

  42. Uthurry C, Varela F, Colomo B, Suárez-Lepe JA, Lombardero J, García del Hierro JR (2006) Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chem 94:262–270

    Article  CAS  Google Scholar 

  43. Lonvaud-Funel A (2001) Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett 199:9–13

    Article  CAS  Google Scholar 

  44. Alcaide-Hidalgo JM, Moreno-Arribas MV, Martín-Álvarez PJ, Polo MC (2007) Influence of malolactic fermentation, postfermentative treatments and ageing with lees on nitrogen compounds of red wines. Food Chem 103:572–581

    Article  CAS  Google Scholar 

  45. Hidalgo J (2003) Tratado de Enología. Mundi-Prensa, Madrid, pp 506–507

    Google Scholar 

  46. OIV (2012) Compendium of international methods of analysis-OIV. Maximum acceptable limits of various substances contained in wine. (MA-C1-01).www.oiv.int/oiv/files/OIV-MA-C1-01._EN.pdf

  47. Rapp A (1993) Foreign and undesirable flavours in wine. TEC & DOC Lavoisier, Paris

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Spanish Ministry of Science and Innovation (MCeI) (Project AGL2008-05603-C02-01/AGR). The authors are very grateful for the help received from Biosystems S.A. Special thanks to Pablo Rodríguez Plaza for the donation of the enzyme kits used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Benito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benito, S., Palomero, F., Morata, A. et al. Physiological features of Schizosaccharomyces pombe of interest in making of white wines. Eur Food Res Technol 236, 29–36 (2013). https://doi.org/10.1007/s00217-012-1836-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1836-2

Keywords

Navigation