Skip to main content
Log in

Biochemical characteristics and thermal inhibition kinetics of polyphenol oxidase extracted from Thompson seedless grape

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Polyphenol oxidase (PPO) was isolated from Thompson seedless grape (Vitis vinifera ‘Thompson Seedless’), and its biochemical characteristics were studied. The PPO showed activity to catechol and D, L-DOPA, but not towards monophenol l-Tyrosine, diphenols guaiacol and caffeic acid, and triphenols pyrogallic acid and gallic acid. Apparent Michaelis–Menten constant (K m) and maximum velocity of the reaction (V max) values were 45.0 ± 0.05 mM and 500.0 ± 15.3 OD400 nm/min for catechol, and 34.6 ± 0.03 mM and 384.6 ± 11.7 OD478 nm/min for D, L-DOPA, respectively. The obtained similar specificity values of V max/K m ratio of catechol and D, L-DOPA indicated their similar affinity to Thompson seedless PPO. The most effective inhibitor was l-cysteine, followed in decreasing order by ascorbic acid, sodium metabisulfite, EDTA, NaCl, and citric acid. It was discovered that metal ions of Mg2+ and Cu2+ increased, while Zn2+ and K+ reduced the PPO activity. Sugars showed inhibition on the PPO activity, with higher effect by sucrose and lower effect by fructose and glucose. Optimum pH and temperature for grape PPO activity were 6.0 and 25 °C with 10 mM catechol as substrate. The enzyme was heat stable between 10 and 25 °C, but showed significant activity loss at temperatures higher than 40 °C and completely inactivation at 70 °C for 10 min. Thermal inactivation of PPO showed a first-order kinetic with an activation energy (E a) of 146.1 ± 10.8 kJ/mol at pH 6.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Esmaiili M, Sotudeh-Gharebagh R, Cronin K, Mousavi MA, Rezazadeh G (2007) Grape drying: a review. Food Res Int 23:257–280

    Article  Google Scholar 

  2. Barnwal P, Tiwari GN (2008) Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study. Sol Energy 82:131–144

    Article  Google Scholar 

  3. Jairaj KS, Singh SP, Srikant K (2009) A review of solar dryers developed for grape drying. Sol Energy 83:1698–1712

    Article  CAS  Google Scholar 

  4. Çakmak G, Yıldız C (2009) Design of a new solar dryer system with swirling flow for drying seeded grape. Int Commun Heat Mass 36:984–990

    Article  Google Scholar 

  5. Esmaiili M, Sotudeh-Gharebagh R, Cronin K, Mousavi MA, Rezazadeh G (2007) Influence of dipping on thin-layer drying characteristics of seedless grapes. Biosyst Eng 98:411–421

    Article  Google Scholar 

  6. Doymaz I (2006) Drying kinetics of black grapes treated with different solutions. J Food Eng 76:212–217

    Article  CAS  Google Scholar 

  7. Bennamoun L, Belhamri A (2006) Numerical simulation of drying under variable external conditions: application to solar drying of seedless grapes. J Food Eng 76:179–187

    Article  Google Scholar 

  8. Rapeanu G, Loey AV, Smout C, Hendrickx M (2006) Biochemical characterization and process stability of polyphenoloxidase extracted from Victoria grape (Vitis vinifera ssp. Sativa). Food Chem 94:253–261

    Article  CAS  Google Scholar 

  9. Wissemann KW, Lee CY (1981) Characterisation of polyphenoloxidase from Ravat 51 and Niagara grapes. J Food Sci 46:506–508

    Article  CAS  Google Scholar 

  10. Lee CY, Smith NL, Pennesi AP (1983) Polyphenoloxidase from De Chaunac grapes. J Agric Food Chem 34:987–991

    Article  CAS  Google Scholar 

  11. Sànchez-Ferrer A, Bru R, Cabanes J, Garcia-Carmona F (1988) Characterisation of catecholase and cresolase activities of Monastrell grape polyphenol oxidase. Phytochemistry 27:319–321

    Article  Google Scholar 

  12. Valero E, Varón R, Garcia-Carmona F (1988) Characterization of polyphenol oxidase from Airen grapes. J Food Sci 53:1482–1485

    Article  CAS  Google Scholar 

  13. Lamikanra O, Kirby S, Musingo M (1992) Muscadine grape polyphenoloxidase: partial purification by high pressure liquid chromatography and some properties. J Food Sci 57:686–695

    Article  CAS  Google Scholar 

  14. Cash JN, Sistrunk WA, Stutte CA (1976) Characteristics of Concord grape polyphenoloxidase involved in juice color loss. J Food Sci 41:1398–1402

    Article  CAS  Google Scholar 

  15. Fortea MI, López-Miranda S, Serrano-Martínez A, CarreñO J, Núñez-Delicado E (2009) Kinetic characterisation and thermal inactivation study of polyphenol oxidase and peroxidase from table grape (Crimson Seedless). Food Chem 113:1008–1014

    Article  CAS  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–253

    Article  CAS  Google Scholar 

  17. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–660

    Article  CAS  Google Scholar 

  18. Halim DH, Montgomery MW (1978) Polyphenol oxidase of d’Anjou pears. J Food Sci 43:603–608

    Article  CAS  Google Scholar 

  19. Oktay M, Küfrevioğlu I, Kocaçalişkan I, Şakiroğlu H (1995) Polyphenoloxidase from Amasya apple. J Food Sci 60:494–496

    Article  CAS  Google Scholar 

  20. Ikediobi CO, Obasuyi HN (1982) Purification and some properties of o-diphenolase from white yam tubers. Phytochemistry 21:2815–2820

    Article  CAS  Google Scholar 

  21. Golan A, Goldhirsh A, Whitaker JR (1984) Effect of ascorbic acid sodium bisulfite and thiol compounds on mushroom polyphenol oxidase. J Agric Food Chem 32:1003–1009

    Article  Google Scholar 

  22. Eidhin DM, Murphy E, O’beirne D (2005) Polyphenoloxidase from apple (malus domestica Borkh. Cv Bramley’s Seedling): purification strategies and characterization. J Food Sci 7:51–58

    Google Scholar 

  23. Richard-Forget FC, Goupy PM, Nicolas JJ (1992) Cysteine as an inhibitor of enzymatic browning 2. Kinetic studies. J Agric Food Chem 40:2108–2113

    Article  CAS  Google Scholar 

  24. DiTusa CA, Christensen T, McCall KA, Fierke CA, Toone EJ (2001) Thermodynamics of metal ion binding. 1. Metal ion binding by wild-type carbonic anhydrase. Biochemistry 40:5338–5344

    Article  CAS  Google Scholar 

  25. Sun J, You YL, Garcia-Garcia E, Long X, Wang JB (2010) Biochemical properties and potential endogenous substrates of polyphenoloxidase from chufa (Eleocharis tuberosa) corms. Food Chem 118:799–803

    Article  CAS  Google Scholar 

  26. Mayer AM, Harel E (1979) Polyphenoloxidases in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  27. Aydemir T (2004) Partial purification and characterization of polyphenol oxidase from artichote (Cynara scolymus L.) heads. Food Chem 87:59–67

    Article  CAS  Google Scholar 

  28. Jang JW, Ma YY, Shin JM, Song KB (2005) Characterization of Polyphenol oxidase extracted from Solanum tuberosum Jasim. Food Sci Biotechonol 14:117–122

    CAS  Google Scholar 

  29. Zhao ZG, Zhu LC, Yu SJ, Saska M (2011) Partial purification and characterization of polyphenol oxidase from sugarcane (Saccharum officinarum L.). Zuckerindustrie 136:296–301

    CAS  Google Scholar 

  30. Blanch M, Sanchez-Ballesta MT, Escribano MI, Merodio C (2011) Fructo- oligosaccharides in table grapes and response to storage. Food Chem 129:724–730

    Article  CAS  Google Scholar 

  31. Liu HF, Wu BH, Fan PG, Li SH, Li LS (2006) Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J Sci Food Agric 86:1526–1536

    Article  CAS  Google Scholar 

  32. Pereira EA, Machado MT, Borges S, Maia MCA, Augusta IM (2008) Influence of osmotic agent on the physiochemical composition and drying kinetics of Gala apples. Rev Cienc Agron 39:173–176

    Google Scholar 

  33. Lenart A (1994) Osmotic dehydration of fruits before drying. In: Singh RP, Oliveira FAR (eds) Minimal processing and process optimization of foods. CRC Press, Boca Raton, p 87

    Google Scholar 

  34. Weemaes CA, Ludikhuyze LR, Van den Broeck I, Hendrickx ME, Tobback PP (1998) Activity electrophoretic characteristics and heat inactivation of polyphenoloxidases from apples avocados grapes pears and plums. LWT-Food Sci Technol 31:44–49

    Article  CAS  Google Scholar 

  35. Aydemir T, Akkanli G (2006) Partial purification and characterisation of polyphenol oxidase from celery root (Apium graveolens L.) and the investigation of the effects on the enzyme activity of some inhibitors. Int J Food Sci Technol 41:1090–1098

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Agriculture Department of China through project numbers of nycytx-30 and 201003021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Shi, J. & Pan, Z. Biochemical characteristics and thermal inhibition kinetics of polyphenol oxidase extracted from Thompson seedless grape. Eur Food Res Technol 234, 607–616 (2012). https://doi.org/10.1007/s00217-012-1664-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1664-4

Keywords

Navigation