Skip to main content
Log in

Effects of roasting on phenolics composition and antioxidant activity of peanut (Arachis hypogaea L.) kernel flour

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effects of roasting on the phenolics composition and antioxidant activity of peanut (Arachis hypogaea L.) kernel flour were appraised. Peanut kernel flour, with and without skin, were roasted at 160 °C for 10, 20, 30, 40 and 50 min. The resultant changes in the antioxidant activity of roasted peanut kernel flour were assessed by the determinations of total phenolics, 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging capacity, percent inhibition of linoleic acid oxidation and thiobarbituric acid test and compared with those of unroasted kernel flour. It was observed that roasting significantly (p < 0.05) increased the antioxidant activity of the peanut kernel flour. HPLC analysis revealed the detection of three phenolic acids (p-hydroxybenzoic, chlorogenic, p-coumaric), two flavonols (quercetin, kaempferol), and a stilbene (resveratrol) both in the roasted and unroasted samples. In peanut kernel flour without skin, the contents of the phenolics increased in the initial roasting phase, however, decreased gradually in the later phase (>20 min of roasting time). In contrast, over the course of heating, the amounts of phenolics were noted to be slightly increased in the peanut kernel flour with skin; the most significant (p < 0.05) increase occurred in the concentration of p-coumaric acid and quercetin at 30, 40, and 50 min of roasting. The results of this study reveal that optimum roasting time should be sought to enhancing the antioxidant capacity and phenolics concentration in peanut kernel flour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kris-Etherton PM, Yu-Poth S, Sabate J, Ratcliffe HE, Zhao G, Etherton TD (1999) Am J Clin Nutr 70:504–511

    Google Scholar 

  2. Allen HL (2008) J Nutr 138:1763–1765

    Google Scholar 

  3. Schwartz GT, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D (2008) Cell Metab 8(4):281–288

    Article  CAS  Google Scholar 

  4. Kirkmeyer SV, Mattes RD (2000) Int J Obesity 24:1167–1175

    Article  CAS  Google Scholar 

  5. Griel AE, Eissenstat B, Juturu V, Hsieh G, Kris-Etherton PM (2004) J Am Coll Nutr 23:660–668

    CAS  Google Scholar 

  6. Isanga J, Zhang GN (2007) Food Rev Int 23:123–140

    Article  CAS  Google Scholar 

  7. Davis JP, Gharst G, Sanders TH (2007) J Tex Stud 38:253–272

    Article  Google Scholar 

  8. Ferreyra PJC, Kuskoski EM, Luiz MTB, Arellano DB, Fett R (2007) Grasas Y Aceites 58:264–269

    Article  CAS  Google Scholar 

  9. Nepote V, Grosso NR, Guzman CA (2005) J Sci Food Agric 85:33–38

    Article  CAS  Google Scholar 

  10. Yu J, Ahmedna M, Goktepe I (2005) Food Chem 90:199–206

    Article  CAS  Google Scholar 

  11. Damame SV, Chavan JK, Kadam SS (1990) Plant Foods Hum Nutr 40:143–148

    Article  CAS  Google Scholar 

  12. Delgado-Andrade C, Morales FJ (2005) J Agric Food Chem 53(5):1403–1407

    Article  CAS  Google Scholar 

  13. Lee S-C, Kim J-H, Jeong S-M, Kim D-R, Ha J-U, Nam KC, Ahn DU (2003) J Agric Food Chem 51:4400–4403

    Article  CAS  Google Scholar 

  14. Lee SC, Jeong SM, Kim SY, Park HR, Nam KC, Ahn DU (2006) Food Chem 94:489–493

    Article  CAS  Google Scholar 

  15. Talcott ST, Passeretti S, Duncan CE, Gorbet DW (2005) Food Chem 90:379–388

    Article  CAS  Google Scholar 

  16. Chukwumah Y, Walker L, Vogler B, Verghese M (2007) J Agric Food Chem 55:9266–9273

    Article  CAS  Google Scholar 

  17. Jayaprakasha GK, Singh RP, Sakariah KK (2001) Food Chem 73:285–290

    Article  CAS  Google Scholar 

  18. Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm Wiss Technol 28:25–30

    CAS  Google Scholar 

  19. Yen GC, Hsieh CL (1998) J Agric Food Chem 46:3952–3957

    Article  CAS  Google Scholar 

  20. Yen GC, Duh PD, Chuang DY (2000) Food Chem 70:307–315

    Article  Google Scholar 

  21. Ottolenghi A (1959) Arch Biochem Biophys 79:355–358

    Article  CAS  Google Scholar 

  22. Kikuzaki H, Nakatani N (1993) J Food Sci 58:1407–1410

    Article  CAS  Google Scholar 

  23. Wang MI, Gillaspie AG, Morris JB, Pittman RN, Davis J, Pederson GA (2008) Plant Gene Resour 6:62–69

    CAS  Google Scholar 

  24. Yurttas HC, Schafer HW, Warthesen JJ (2000) J Food Sci 65(2):276–280

    Article  CAS  Google Scholar 

  25. Randhir R, Kwon Y-I, Shetty K (2008) Innov Food Sci Emerg Tech 9:355–364

    Article  CAS  Google Scholar 

  26. Durmaz G, Alpaslan M (2007) Food Chem 100:1177–1181

    Article  CAS  Google Scholar 

  27. Şensoy I, Rosén RT, Ho C-T, Karwe MV (2006) Food Chem 99:388–393

    Article  Google Scholar 

  28. Karchesy JJ, Hemingway RW (1986) J Agric Food Chem 34:966–970

    Article  CAS  Google Scholar 

  29. Boateng J, Verghese M, Walker LT, Ogutu S (2008) LWT Food Sci Technol 41:1541–1547

    Article  CAS  Google Scholar 

  30. Hilal Ş, Ayhan T, Monika P, Feramuz Ö (2009) Eur Food Res Technol 230:155–161

    Article  Google Scholar 

  31. Sultana B, Anwar F, Iqbal S (2008) Int J Food Sci Technol 43:560–567

    Article  CAS  Google Scholar 

  32. Kim SY, Jeong SM, Park WP, Nam KC, Ahn DU, Lee SC (2006) Food Chem 97:472–479

    Article  CAS  Google Scholar 

  33. Lee K, Kim Y, Lee H, Lee C (2003) J Agric Food Chem 51:7292–7295

    Article  CAS  Google Scholar 

  34. Cai YZ, Sun M, Xing J, Luo Q, Corke H (2006) Life Sci 78:2872–2888

    Article  CAS  Google Scholar 

  35. Dewanto M, Wu X, Adom K, Liu R (2002) J Agric Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  36. Nicoli MC, Anese M, Parpinel M (1997) Trends Food Sci Technol 10:94–100

    Article  Google Scholar 

  37. Jeong S-M, Kim S-Y, Kim D-R, Nam KC, Ahn DU, Lee S-C (2004) J Food Sci 69:377–381

    Article  Google Scholar 

  38. Bekedam EK, Schols HA, Van Boekel MAJS (2008) J Agric Food Chem 56:2055–2063

    Article  CAS  Google Scholar 

  39. Adelakun OE, Oyelade OJ, Ade-Omowaye BIO, Adeyemi IA, Venter MV (2009) Food Chem Toxic 47:1123–1126

    Article  CAS  Google Scholar 

  40. Decker EA (1998) In: Akoh CC, Min DB (eds) Food lipids, chemistry, nutrition, and biotechnology. Marcel Dekker, New York

    Google Scholar 

  41. Siddhuraju P, Becker K (2007) Food Chem 101:10–19

    Article  CAS  Google Scholar 

  42. Tsuda T, Ohshima K, Kawakishi S, Osawa T (1994) J Agric Food Chem 42:248–251

    Article  CAS  Google Scholar 

  43. Krings U, Johansson L, Zorn H, Berger RG (2006) Food Chem 97:712–718

    Article  CAS  Google Scholar 

  44. Ledwozyw A, Michalak J, Stepien A, Kadziolka A (1986) Clin Chim Acta 155:275–284

    Article  CAS  Google Scholar 

  45. Mastrocola D, Munari M (2000) J Agric Food Chem 48:3555–3559

    Article  CAS  Google Scholar 

  46. Farag RS, Badei AZ, El-Baroty GS (1989) JAOCS 66:800–804

    Article  CAS  Google Scholar 

  47. Dabrowski KJ, Sosulski FW (1984) J Agric Food Chem 32:128–130

    Article  CAS  Google Scholar 

  48. Zill-e-Huma R, Maryline AV, Jean FM, Farid C (2009) J Chromatogr Anal 1216:7700–7707

    Article  CAS  Google Scholar 

  49. Sander TH, McMichael RW, Hendrix KW (2000) J Agric Food Chem 48:1243–1246

    Article  Google Scholar 

  50. Krings U, El-Saharty Y, El-Zeany BA, Pabbel B, Berger RG (2000) Food Chem 71:91–95

    Article  CAS  Google Scholar 

  51. Mottram DS (1994) In: Parliament T et al (eds) Flavour compounds formed during the Maillard reaction. American Chemical Society, Washington, DC

    Google Scholar 

  52. Martins SIFS, Jongen WMF, Van Boekel MAJS (2001) Trends Food Sci Technol 11(9–10):364–373

    Google Scholar 

  53. Yanagimoto K, Lee K-G, Ochi A, Shibamoto T (2002) J Agric Food Chem 50:5480–5484

    Article  CAS  Google Scholar 

  54. Lazarus SA, Adamson GE, Hammerstone JF, Schmitz HH (1999) J Agric Food Chem 47:3693–3701

    Article  CAS  Google Scholar 

  55. ES-Safi N-M, Cheynier V, Moutounet M (2000) J Agric Food Chem 48:5946–5954

    Article  CAS  Google Scholar 

  56. Yu J, Ahmedna M, Goktepe I, Dia J (2006) J food Compo Anal 19:364–371

    Article  CAS  Google Scholar 

  57. Saffan SE-S (2008) J Agric Bio Sci 4:167–174

    CAS  Google Scholar 

  58. Cheng Z, Su L, Moore J, Zhou K, Luther M, Yin J, Yu L (2006) J Agric Food Chem 54:5623–5629

    Article  CAS  Google Scholar 

  59. Rakic S, Petrovic S, Kukic J, Jadranin M, Tesevic V, Povrenovic D, Siler MS (2007) Food Chem 104:830–834

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Oil Crop Development Project (UTF/MYA/006) in Myanmar initiated by the Ministry of Agriculture and Irrigation, Myanmar and FAO for financing this study and the Universiti Putra Malaysia for providing us for laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azizah Abdul-Hamid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Win, M.M., Abdul-Hamid, A., Baharin, B.S. et al. Effects of roasting on phenolics composition and antioxidant activity of peanut (Arachis hypogaea L.) kernel flour. Eur Food Res Technol 233, 599–608 (2011). https://doi.org/10.1007/s00217-011-1544-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1544-3

Keywords

Navigation