Skip to main content
Log in

Development and optimization of low temperature enzyme-assisted liquefaction for the production of colouring foodstuff from purple pitaya (Hylocereus sp. [Weber] Britton & Rose)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

An innovative liquefaction process for the production of colouring foodstuff from purple pitaya was developed and optimized. Conducting an enzyme screening, the most suitable enzyme preparation for the liquefaction of pitaya pulp at low temperatures (4–12 °C) was selected allowing extensive viscosity reduction (50%) and high betalain retention (80%). A modified D-optimal design was used for the optimization of significant influence factors. Maximizing a heuristic optimization function composed of regression terms of the responses relative viscosity (R 2 = 0.97), betalain retention (R 2 = 0.88) and betanin–isobetanin retention (R 2 = 0.92), a numeric algorithm was established for process parameter optimization. The total juice yield was increased from 25–39 to 48–60% by implementation of the optimized liquefaction procedure into the pitaya juice production process. Mucilage separation steps were unnecessary and pitaya seeds could simply be separated as a by-product after juice filtration due to the extensive degradation of the mucilaginous matrix. In contrast to previously described mucilage liquefactions, the betalain profile was remarkably changed due to the applied enzymatic treatment resulting in a colour shift (Δh° = −14.7 ± 0.3) to bluish tones, and concentration of the so obtained pitaya juices from 12.3% TSS to 33% TSS and 65% TSS was successful at pilot plant scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wissgott U, Bortlik K (1996) Trends Food Sci Technol 7:298–302

    Article  CAS  Google Scholar 

  2. McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J (2007) Lancet 370:1560–1567

    Article  CAS  Google Scholar 

  3. Stintzing FC, Carle R (2004) Trends Food Sci Technol 15:19–38

    Article  CAS  Google Scholar 

  4. Santamaria P (2006) J Sci Food Agric 86:10–17

    Article  CAS  Google Scholar 

  5. Acree TE, Lee CY, Butts RM, Barnard J (1976) J Agric Food Chem 24:430–431

    Article  CAS  Google Scholar 

  6. Moßhammer M, Stintzing FC, Carle R (2005) Innov Food Sci Emerg Technol 6:221–231

    Article  Google Scholar 

  7. Moßhammer M, Stintzing FC, Carle R (2006) Innov Food Sci Emerg Technol 7:275–287

    Article  Google Scholar 

  8. Herbach KM, Maier C, Stintzing FC, Carle R (2007) Eur Food Res Technol 224:649–658

    Article  CAS  Google Scholar 

  9. Sáenz C, Sepúlveda E, Matsuhiro B (2004) J Arid Environ 57:275–290

    Article  Google Scholar 

  10. Stintzing FC, Carle R (2005) Mol Nutr Food Res 49:175–194

    Article  CAS  Google Scholar 

  11. Paulsen BS, Lund PS (1979) Phytochemistry 18:569–571

    Article  CAS  Google Scholar 

  12. Majdoub H, Roudesli S, Picton L, Le Cerl D, Muller G, Grisel M (2001) Carbohydr Polym 46:69–79

    Article  CAS  Google Scholar 

  13. Stintzing FC, Carle R (2007) Trends Food Sci Technol 18:514–525

    Article  CAS  Google Scholar 

  14. Esquivel P, Stintzing FC, Carle R (2007) J Appl Bot 81:7–14

    CAS  Google Scholar 

  15. Herjavec S, Jeromel A, Prusina T, Maslov L (2008) J Cent Eur Agric 9:505–510

    Google Scholar 

  16. Schweiggert U, Hofmann S, Reichel M, Schieber A, Carle R (2007) J Food Eng 84:28–38

    Article  Google Scholar 

  17. Maier T, Göppert A, Kammerer DR, Schieber A, Carle R (2008) Eur Food Res Technol 227:267–275

    Article  CAS  Google Scholar 

  18. Stintzing FC, Schieber A, Carle R (2003) Eur Food Res Technol 216:303–311

    CAS  Google Scholar 

  19. Esquivel P, Stintzing FC, Carle R (2007) Innov Food Sci Emerg Technol 8:451–457

    Article  CAS  Google Scholar 

  20. Herbach KM, Rohe M, Stintzing FC, Carle R (2006) Food Res Int 39:667–677

    Article  CAS  Google Scholar 

  21. Pasch JH, von Elbe JH (1979) J Food Sci 44:72–81

    Article  CAS  Google Scholar 

  22. Petersen H (1992) Grundlagen der Statistik und Statistischen Versuchsplanung Band II, Ecomed Verlagsgesellschaft, Landsberg/Lech

  23. Wang C, Eufemi M, Turano C, Giartosio A (1996) Biochemistry 35:7299–7307

    Article  CAS  Google Scholar 

  24. Gorinstein S, Zemser M, Vargas-Albores F, Ochoa JL, Paredes-Lopez O, Scheler C, Aksu S, Salnikow J (1999) J Prot Chem 18:239–247

    Article  CAS  Google Scholar 

  25. Gong F, Liang YZ, Fung YS, Chau FT (2004) J Chromatogr A 1029:173–183

    Article  CAS  Google Scholar 

  26. Stintzing FC, Schieber A, Carle R (2002) Food Chem 77:101–106

    Article  CAS  Google Scholar 

  27. Czyżowska A, Klewicka E, Libudzisz Z (2006) Eur Food Res Technol 223:110–116

    Article  Google Scholar 

  28. Ganda-Herrero F, Escribano J, Garca-Carmona F (2007) J Agric Food Chem 55:1546–1551

    Article  Google Scholar 

  29. Herbach KM, Stintzing FC, Carle R (2004) J Food Sci 69:491–498

    Google Scholar 

  30. Herbach KM, Stintzing FC, Carle R (2006) J Agric Food Chem 54:390–398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ellen Hemme and François Raoul-Duval (SCRD, Le Havre, France) for financially supporting this study. One of the authors (R.M.S.) is grateful for a travel grant by the Eiselen Foundation (Ulm, Germany). We thank Prof. Dr. Franz Schweiggert (Institute of Applied Information Processing, University of Ulm) for mathematical assistance in developing the optimization algorithm and the fruitful discussions with Dr. Ute Schweiggert and Georg M. Weisz are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Carle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweiggert, R.M., Villalobos-Gutierrez, M.G., Esquivel, P. et al. Development and optimization of low temperature enzyme-assisted liquefaction for the production of colouring foodstuff from purple pitaya (Hylocereus sp. [Weber] Britton & Rose). Eur Food Res Technol 230, 269–280 (2009). https://doi.org/10.1007/s00217-009-1167-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1167-0

Keywords

Navigation