Skip to main content
Log in

Comparison of rheological, fermentative and baking properties of gluten-free dough formulations

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This paper examines the fundamental rheological properties, capability of CO2 retention during proofing, and baking behaviour of gluten-free (GF) dough. Maize flour, maize starch, rice flour, and buckwheat flour formulations are compared. Apple pectin is used as the structuring agent. Rheologically, the GF dough formulations can be defined as physical gels of different viscoelasticity and structural networking. The curves of CO2 retention in the GF dough best fit with the asymmetric transition sigmoidal function. Some correlations between characteristic parameters of the transition sigmoids versus rheological parameters of the GF dough, the spread parameter n of Cole–Cole model and the shear-thinning consistency index k, were found. In baking tests, extending the proofing time improved the taste, aroma, and mouth feel of gluten-free breads, particularly when a sourdough step was applied or flaxseed was added to the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ciclitira PJ, Ellis HJ, Lundin KEA (2005) Best Pract Res Clin Gastroenterol 19:359–371. doi:10.1016/j.bpg.2005.01.003

    Article  Google Scholar 

  2. Hamer RJ (2005) Biotechnol Adv 23:401–408. doi:10.1016/j.biotechadv.2005.05.005

    Article  CAS  Google Scholar 

  3. Gallagher E, Gormley TR, Arendt EK (2004) Trends Food Sci Technol 15:143–152. doi:10.1016/j.tifs.2003.09.012

    Article  CAS  Google Scholar 

  4. Taylor JRN, Schober TJ, Bean SR (2006) J Cereal Sci 44:252–271. doi:10.1016/j.jcs.2006.06.009

    Article  CAS  Google Scholar 

  5. Gallagher E, Kunkel A, Gormley TR, Arendt EK (2003) Eur Food Res Technol 218:44–48. doi:10.1007/s00217-003-0818-9

    Article  CAS  Google Scholar 

  6. Korus J, Achremowicz B (2004) Żywność (Food) 38:65–73. http://www.pttz.org/zyw/

    Google Scholar 

  7. Gambuś H, Gambuś F, Sabat R (2002) Żywność (Food) 9:99–112

    Google Scholar 

  8. Kiskini A, Argiri K, Kalogeropoulos M, Komaitis M, Kostaropoulos A, Mandala J, Kapsokefalou M (2007) Food Chem 102:309–316. doi:10.1016/j.foodchem.2006.05.022

    Article  CAS  Google Scholar 

  9. Gambuś H (2005) Żywność (Food) 45(Suppl):61–74. http://www.pttz.org/zyw/

  10. Korus J, Grzelak K, Achremowicz K, Sabat R (2006) Food Sci Technol Int 12:489–495. doi:10.1177/1082013206073072

    Article  CAS  Google Scholar 

  11. Dłużewska E, Marciniak K, Dojczew D (2001) Żywność (Food) 9:57–67

    Google Scholar 

  12. Guarda A, Rosell CM, Benedito C, Galotto MJ (2004) Food Hydrocolloids 18:241–247. doi:10.1016/S0268-005X(03) 00080-8

    Article  CAS  Google Scholar 

  13. Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) J Food Eng 79:1033–1047. doi:10.1016/j.jfoodeng.2006.03.032

    Article  CAS  Google Scholar 

  14. Moore MM, Schober TJ, Dockery P, Arendt EK (2004) Cereal Chem 81:567–575

    Article  CAS  Google Scholar 

  15. Sanchez HD, Osella CA, De la Torre MA (2002) J Food Sci 67:416–419

    Article  CAS  Google Scholar 

  16. Arendt EK, Ryan LAM, Dal Bello F (2007) Food Microbiol 24:165–174. doi:10.1016/j.fm.2006.07.011

    Article  CAS  Google Scholar 

  17. Katina K, Arendt E, Liukkonen KH, Autio K, Flander L, Poutanen K (2005) Trends Food Sci Technol 16:104–112. doi:10.1016/j.tifs.2004.03.008

    Article  CAS  Google Scholar 

  18. Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2007) Food Microbiol 24:187–196. doi:10.1016/j.fm.2006.07.014

    Article  CAS  Google Scholar 

  19. Moore MM, Dal Bello F, Arendt EK (2008) Eur Food Res Technol 226:1309–1316. doi 10.1007/s00217-007-0659-z

    Article  CAS  Google Scholar 

  20. Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA (2005) Trends Food Sci Technol 16:12–30. doi:10.1016/j.tifs.2004.02.011

    Article  CAS  Google Scholar 

  21. Kokelaar JJ, Prins A (1995) J Cereal Sci 22:53–61

    Article  Google Scholar 

  22. Salt LJ, Wilde PJ, Georget D, Wellner N, Skeggs PK, Mills ENC (2006) J Cereal Sci 43:284–292. doi:10.1016/j.jcs.2005.12.013

    Article  CAS  Google Scholar 

  23. Gandikota S, MacRitchie F (2005) J Cereal Sci 42:157–163. doi:10.1016/j.jcs.2005.02.007

    Article  Google Scholar 

  24. Romano A, Toraldo G, Cavella S, Masi P (2007) J Food Eng 83:142–148. doi:10.1016/j.jfoodeng.2007.02.014

    Article  CAS  Google Scholar 

  25. Babin P, Della Valle G, Chiron H, Cloetens P, Hoszowska J, Pernot P, Reguerre AL, Salvo L, Dendievel R (2006) J Cereal Sci 43:393–397. doi:10.1016/j.jcs.2005.12.002

    Article  Google Scholar 

  26. Hailemariam L, Okos M, Campanella O (2007) J Food Eng 82:466–477. doi:10.1016/j.jfoodeng.2007.03.006

    Article  Google Scholar 

  27. Zhang J, Datta AK (2006) J Food Eng 75:78–89. doi:10.1016/j.jfoodeng.2005.03.058

    Article  Google Scholar 

  28. Pruska-Kedzior A, Kedzior Z, Klockiewicz-Kaminska E (2008) Eur Food Res Technol 227:199–207. doi 10.1007/s00217-007-0710-0

    Article  CAS  Google Scholar 

  29. Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior. An introduction. Springer, Berlin

    Google Scholar 

  30. Baked goods, methods of assessment, Polish Standard PN-A-74108:1996

  31. Lawton JW, Wilson CM (2003) Protein of the kernel. In: White PJ, Johnson LA (eds) Corn chemistry and technology, 2nd edn. American Association of Cereal Chemists Inc., St Paul, pp 313–354

    Google Scholar 

  32. Juliano BO (1985) Polysaccharides, proteins and lipids of rice. In: Juliano BO (ed) Rice chemistry and technology, 2nd edn. American Association of Cereal Chemists Inc., St Paul, pp 59–174

    Google Scholar 

  33. Pomeranz Y (1983) CRC critical reviews in food science nutrition 19:213–258

    Article  CAS  Google Scholar 

  34. Wei YM, Hu XZ, Zhang GQ, Quyang SH (2003) Nahrung/Food 47:114–116

    Article  CAS  Google Scholar 

  35. Lefebvre J, Pruska-Kedzior A, Kedzior Z, Lavenant L (2003) J Cereal Sci 38:257–267. doi:10.1016/S0733-5210(03) 00025-0

    Article  Google Scholar 

  36. Lefebvre J (2006) Rheol Acta 45:525–538. doi:10.1007/s00397-006-0093-3

    Article  CAS  Google Scholar 

  37. Pruska-Kędzior A (2006) Application of phenomenological rheology methods to quantification of wheat gluten viscoelastic properties. Scientific monographs, vol 373, The Agricultural University, Poznań, p 141 (in Polish)

  38. Pruska-Kedzior A, Kedzior Z, Bera E, Hryciuk K, Golinska-Krysztofiak J (2005) Electron J Polish Agric Univ 8. (http://www.ejpau.media.pl/volume8/issue2/art-33.html)

  39. Gujral HS, Guardiola I, Carbonell JV, Rosell CM (2003) J Agric Food Chem 51:3814–3818

    Article  CAS  Google Scholar 

  40. Sivaramakrishnan HP, Senge B, Chattopadhyay PK (2004) J Food Eng 62:37–45. doi:10.1016/S0260-8774(03) 00169-9

    Article  Google Scholar 

  41. Ferry J (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  42. Song Y, Zheng Q (2007) Trends Food Sci Technol 18:132–138. doi:10.1016/j.tifs.2006.11.003

    Article  CAS  Google Scholar 

  43. Rouillé J, Della Valle G, Lefebvre J, Sliwinski E, van Vliet T (2005) J Cereal Sci 42:45–57. doi:10.1016/j.jcs.2004.12.008

    Article  Google Scholar 

  44. Uthayakumaran S, Newberry M, Phan-Thien N, Tanner R (2002) Rheol Acta 41:162–172

    Article  CAS  Google Scholar 

  45. Petrofsky KE, Hoseney RC (1995) Cereal Chem 72:53–58

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenon Kędzior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruska-Kędzior, A., Kędzior, Z., Gorący, M. et al. Comparison of rheological, fermentative and baking properties of gluten-free dough formulations. Eur Food Res Technol 227, 1523–1536 (2008). https://doi.org/10.1007/s00217-008-0875-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0875-1

Keywords

Navigation