Skip to main content
Log in

Novel anticoagulant compound from fermented red alga Pachymeniopsis elliptica

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Natural fermentation was tested as a method of releasing active compounds during screening for potential anticoagulant activity in three types of algae (Pachymeniopsis elliptica, Sargassum horneri, and Ulva pertusa). Freeze dried algae samples (2.5 g) were fermented by adding 75 g of sugar and 500 mL of water and thereafter kept at room temperature (25 °C) for 3 months. Activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) were measured every 2 weeks for 3 months to determine the optimum time for the highest activity. Fermented P. elliptica, (which had the highest activity) was subjected to anion exchange chromatography (DEAE-cellulose) and sepharose 4B gel permeation chromatography. The purified sample was analyzed by agarose-gel electrophoresis and polyacrylamide gel electrophoresis (PAGE) to confirm the purification and to determine the molecular mass, respectively. The 360 μg/mL of purified compound (Mwt > 500,000 Da) had both APTT and PT activities (>1,000 s). However, at the concentrations of 180 μg/mL, purified compound and heparin showed 540 and >1,000 s APTT activity, respectively. Though, the purified compound of P. elliptica considered as a weaker anticoagulant than heparin, this purified anticoagulant polysaccharide could be considered as a good alternative source as an anticoagulant. Moreover, the technique of fermentation is an inexpensive and feasible, this purified anticoagulant polysaccharide compound could be used in pharmaceutical and biomedical industry. Further investigations need to be performed to determine the mechanism of this novel anticoagulant compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nader HB, Pinhal MAS, Bau EC, Castro RAB, Medeiros GF, Chavante SF, Leite EL, Trindade ES, Shinjo SK, Rocha HAO, Tersariol ILS, Mendes A, Dietrich CP (2001) Braz J Med Biol Res 34:699–709

    Article  CAS  Google Scholar 

  2. McLellan DS, Jurd KM (1992) Fibrinolysis 3:69–74

    CAS  Google Scholar 

  3. Moll S, Roberts HR (2002) Semin Hematol 39:145–157

    Google Scholar 

  4. Nunn JR, Parolis H, Russell I (1971) Carbohydr Res 20:205–215

    Article  CAS  Google Scholar 

  5. Kolender AA, Pujol CA, Damonte EB, Matulewicz MC, Cerezo AS (1997) Carbohydr Res 304: 53–60

    Article  CAS  Google Scholar 

  6. Nishino T, Yokoyama G, Kenji D, Fujihara M, Nagumo T (1989) Carbohy Res 186:119–129

    Article  CAS  Google Scholar 

  7. Gamallo-Lorenzo D, Barciela-Alonso MDC, Moreda-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera P (2005) Anal Chim Acta 542:287–295

    Article  CAS  Google Scholar 

  8. Johnston M, Johnston D, Richardson A (2005) Comp Biochem Phys Part B Biochem Mol Biol 140:251–257

    Article  CAS  Google Scholar 

  9. Heo SJ, Jeon YJ, Lee J, Kim HT, Lee KW (2003) Algae 18:341–347

    Article  Google Scholar 

  10. Athukorala Y, Lee KW, Kim SK, Jeon YJ (2007) Biores Tech 98(9):1711–1716

    Article  CAS  Google Scholar 

  11. Uchida M, Murata M (2004) J App Microb 97:1297–1310

    Article  CAS  Google Scholar 

  12. Nikapitiya C, De Zoysa M, Jeon YJ, Lee J, Jee Y (2007) J World Aqua Cult 38(3):407–417

    Article  Google Scholar 

  13. De Zoysa M, Nikapitiya C, Jeon YJ, Jee Y, Lee J (2007) J Appl Phycol. doi:10.1007/s10811-007-9182-7 (Accepted)

  14. Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Comp Biochem Physiol Part B 125:137–143

    Article  CAS  Google Scholar 

  15. Chaplin MF (1994) In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis. Information Press Ltd., Eynsham, pp 1–40

  16. Farndale RW, Buttle DJ, Barret AJ (1986) Biochem Bioph Acta 883:173–177

    CAS  Google Scholar 

  17. Athukorala Y, Jung WK, Vasanthan T, Jeon YJ (2006) Carbohydr Polym 66:184–191

    Article  CAS  Google Scholar 

  18. Battcock M, Azam-Ali S (1998) FAO Agricultural Services Bulletin No. 134. 1998 ISBN. 92-5-104226-8

  19. Atlas RM (1995) In: Atlas RM (ed) Principles of Microbiology. Mosby-Year Book Inc., St. Louis, pp 147–154

  20. Matsubara K, Matsuura Y, Bacic A, Liao M, Hori K, Miyazawa K (2001) Int J Biol Macrom 28:395–399

    Article  CAS  Google Scholar 

  21. Grauffel V, Kloareg B, Mabeau S, Durand P, Josefonficz J (1989) Biomat 10:363–369

    Article  CAS  Google Scholar 

  22. Matsubara K, Matsuura Y, Hori K, Miyazawa K (2000) J Appl Phycol 12:9–14

    Article  CAS  Google Scholar 

  23. Baumann R, Rys P (1999) Int J Biol Macromol 24:15–18

    Article  CAS  Google Scholar 

  24. Dietrich CP, Dietrich SMS (1976) Anal Biochem 70:645–647

    Article  CAS  Google Scholar 

  25. Shanmugam M, Mody KH (2000) Curr Sci 79:1672–1682

    CAS  Google Scholar 

  26. Nishino T, Aizu Y, Nagumo T (1991) Thromb Res 64:723–31

    Article  CAS  Google Scholar 

  27. Yang JY, Du Y, Huang R, Wan Y, Li T (2002) Biol Macrom 31:55–66

    Article  CAS  Google Scholar 

  28. Kolender AA, Matulewicz CM (2002) Carbohyd Res 337:57–68

    Article  CAS  Google Scholar 

  29. Matsubara K, Matsuura Y, Bacic A, Liao M, Hori K, Miyazawa K (2001) Int J Biol Macromol 28:395–399

    Article  CAS  Google Scholar 

  30. Srivastava R, Kulshreshtha DK (1989) Phytochemistry 28:2877–2883

    Article  CAS  Google Scholar 

  31. Nagase H, Enjyoji K, Minamiguchi K, Kitazato KT, Kitazato K, Saito H, Kato H (1995) Blood 85:1527–1534

    CAS  Google Scholar 

  32. Nagase H, Enjyoji K, Shima M, Kitazato K, Yoshioka A, Saito H, Kato H (1996) J Biochem 119:63–69

    CAS  Google Scholar 

  33. Nagase H, Enjyoji K, Kamikubo Y, Kitazato KT, Kitazato K, Saito H, Kato H (1997) Thromb Haemost 78:864–870

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marine and Extreme Genome Research Center Program, Ministry of Marine Affairs and Fisheries, Republic of Korea. Prashani Mudika Ekanayake was supported by a research assistant program by Brain Korea 21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehee Lee.

Additional information

The authors Prashani Mudika Ekanayake and Chamilani Nikapitiya contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekanayake, P.M., Nikapitiya, C., De Zoysa, M. et al. Novel anticoagulant compound from fermented red alga Pachymeniopsis elliptica . Eur Food Res Technol 227, 897–903 (2008). https://doi.org/10.1007/s00217-007-0802-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0802-x

Keywords

Navigation