Skip to main content
Log in

Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effect of different methods of conservation (frozen and canned) on the antioxidant properties of raw apricot was evaluated, and antioxidant activity of both types of processed fruit was monitored during 150 days of storage. The raw apricot exhibited the highest inhibition of oxidation according to the lipid peroxidation assay. The freezing process led to a slight loss of antioxidant activity, whereas canned apricots lost their antioxidant capacity. All samples showed a higher degree of protection in the deoxyribose assay (OH·) than BHA and BHT. The capacity of raw apricot to scavenge radical superoxide was higher than that of the antioxidant standards analysed, whereas the freezing and canning treatment decreased this capacity. The raw or processed apricots showed no capacity to scavenge hydrogen peroxide, nor offered oxidative stability to olive, sunflower and corn oils under the conditions of heating involved in the Rancimat test. Canned apricots showed higher ABTS·+ scavenging capacity than the raw fruit, perhaps as a result of the syrup absorbed by canned apricots. Raw apricots showed a very good capacity to protect linoleic acid against oxidation. During storage in frozen and canned apricots no important changes were detected in the different antioxidant activities assayed from 1 to 150 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Badenes ML, Martínez–Calvo J, Llácer G (1998) Euphytica 102:93–99

    Article  Google Scholar 

  2. Marlett JA, Vollendorf NW (1994) Food Chem 51:39–44

    Article  CAS  Google Scholar 

  3. Voi AL, Impembo M, Fasanaro G, Castaldo D (1995) J Food Comp Anal 8:78–85

    Article  CAS  Google Scholar 

  4. Herreman K (1996) Gemüseverwertung 2:42–46

    Google Scholar 

  5. Heim KE, Tagliaferro AR, Bobiliya D (2002) J Nutr Biochem 13:572–584

    Article  CAS  Google Scholar 

  6. Eichholzer M, Lüthy J, Gutzwiller F, Stähelin HB (2001) Int J Vitam Nutr Res 71:5–17

    Article  CAS  Google Scholar 

  7. Radi M, Mahrouz M, Jaouad A, Amiot MJ (2004) Sci Aliments 24:173–184

    Article  CAS  Google Scholar 

  8. Dragovic-Uzelac V, Delonga K, Levaj B, Djakovic S, Pospisil J (2005) J Agric Food Chem 53:4836–4842

    Article  CAS  Google Scholar 

  9. Karakaya S, El SN, Taç AA (2001) Int J Food Sci Nutr 52:501–508

    Article  CAS  Google Scholar 

  10. Di Matteo V, Esposito E (2003) Curr Drug Target Neurol Disord 2:95–107

    Article  CAS  Google Scholar 

  11. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Mol Cell Biochem 266:37–56

    Article  CAS  Google Scholar 

  12. Egea I, Martínez-Madrid MC, Sánchez-bel P, Murcia MA, Romojaro F (2006) LWT. doi:10.1016/j.lwt.2006.06.005

  13. Sharma TR, Sekhon KS, Saini SPS (1992) J Food Sci Technol India 29:22–25

    Google Scholar 

  14. Villanuá MP, Arias-Camisón EC, Fernández C, García MC (1992) Annal Brom XLIV-1:71–16

    Google Scholar 

  15. Botodoni R, Crisá A, Massantini R, Mencarelli F (2000) J Hort Sci Biochem 75:202–208

    Google Scholar 

  16. Murcia MA, Vera AM, García-Carmona F (1992) J Sci Food Agric 60:81–84

    Article  CAS  Google Scholar 

  17. Murcia MA, López-Ayerra B, Martínez-Tomé M, Vera AM, García-Carmona F (2000) J Sci Food Agric 80:1882–1886

    Article  CAS  Google Scholar 

  18. Murcia MA, López-Ayerra B, Martínez-Tomé M, García-Carmona F (2001a) J Sci Food Agric 81:1299–1305

    Article  CAS  Google Scholar 

  19. Murcia MA, Martínez-Tomé M, Jiménez AM, Vera AM, Honrubia M, Parras P (2002) J Food Protect 65:1614–1622

    CAS  Google Scholar 

  20. Puupponen-Pimiä R, Häkkinen S, Aarni M, Suortti T, Lampi Am, Eurola M, Piironen V, Nuutila Am, Oksman-Caldentey KM (2003) J Sci Food Agric 83:1389–1402

    Article  CAS  Google Scholar 

  21. Kalt W (2005) J Food Sci 70:11–19

    Article  Google Scholar 

  22. Aruoma OI, Murcia MA, Butler J, Halliwell B (1993) J Agric Food Chem 41:1880–1885

    Article  CAS  Google Scholar 

  23. Martínez-Tomé M, García-Carmona F, Murcia MA (2001) J Sci Food Agric 81:1019–1026

    Article  Google Scholar 

  24. Murcia MA, Egea I, Romojaro F, Parras P, Jiménez AM, Martínez-Tomé M (2004) J Agric Food Chem 52:1872–1881

    Article  CAS  Google Scholar 

  25. Parras P, Martínez-Tomé M, Jiménez AM, Murcia MA (2007) Food Chem 102:582–592

    Article  CAS  Google Scholar 

  26. Martínez-Tomé M, Murcia MA, Frega N, Ruggieri S, Jiménez AM, Roses F, Parras P (2004) J Agric Food Chem 52:4690–4699

    Article  CAS  Google Scholar 

  27. López-Ayerra B, Murcia MA, García-Carmona F (1998) Food Chem 61:113–118

    Article  Google Scholar 

  28. Murcia MA, Jiménez AM, Martínez-Tomé M (2001b) J Food Prot 64:2037–2046

    CAS  Google Scholar 

  29. Lichtenthäler R, Marx F (2005) J Agric Food Chem 53:103–110

    Article  CAS  Google Scholar 

  30. Chaovanalikit A, Wrolstad RE (2004) J Food Sci 69:67–72

    Google Scholar 

  31. Sun Y, Hayakawa S, Ogawa M, Izumori K (2007) Food Control 18:220–227

    Article  CAS  Google Scholar 

  32. Rigal D, Gauillard F, Richard-Forget F (2000) J Sci Food Agric 80:763–768

    Article  Google Scholar 

  33. Radi M, Mahrouz M, Amiot MJ (1997) HortSci 32:1087–1091

    CAS  Google Scholar 

  34. Chun OK, Kim D-O, Lee CY (2003) J Agric Food Chem 51:8067–8072

    Article  CAS  Google Scholar 

  35. Sichel G, Corsaro C, Scalia M, Di Bilio AJ, Bonomo RP (1991) Free Radic Biol Med 11:1–8

    Article  CAS  Google Scholar 

  36. Wagner KH, Derkits S, Herr M, Schuh W, Elmadfa I (2002) Food Chem 78:375–382

    Article  CAS  Google Scholar 

  37. Peschel W, Sánchez-Rabaneda F, Diekmann W, Plescher A, Gartzía I, Jiménez D, Lamuela-Raventós R, Buxaderas S, Codina C (2006) Food Chem 97:137–150

    Article  CAS  Google Scholar 

  38. García-Alonso M, Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC (2004) Food Chem 84:13–18

    Article  CAS  Google Scholar 

  39. Stratil P, Klejdus B, Kubán V (2006) J Agric Food Chem 54:607–616

    Article  CAS  Google Scholar 

  40. Scibisz I, Mitek M (2005) Polskie Towarzystwo Tech. Zywnosci 12:210–221

    CAS  Google Scholar 

  41. Lichtenthäler R, Marx F, Kind OM (2003) Eur Food Res Technol 216:166–173

    Google Scholar 

  42. Klopotek Y, Otto K, Böhm V (2005) J Agric Food Chem 53:5640–5646

    Article  CAS  Google Scholar 

  43. Prenesti E, Berto S, Daniele PG, Torso S (2007) Food Chem 100:433–438

    Article  CAS  Google Scholar 

  44. Prior RL, Cao G (2000) J AOAC Int 83:950–956

    CAS  Google Scholar 

  45. Veberic R, Stampar F (2005) Phyton 45:375–383

    CAS  Google Scholar 

  46. Larrauri JA, Goni I, Martín-Carrou, Ruperez P, Saura-Calixto F, (1996) J Sci Food Agric 71:515–519

    Article  CAS  Google Scholar 

  47. Serrano J, Goñi I, Saura-Calixto F (2007) Food Res Int 40:15–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a project supported by Fundation Seneca/Consejería de Agricultura, Agua y Alimentación/FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Murcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, A.M., Martínez-Tomé, M., Egea, I. et al. Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida) . Eur Food Res Technol 227, 125–134 (2008). https://doi.org/10.1007/s00217-007-0701-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0701-1

Keywords

Navigation