Skip to main content
Log in

Effect of chitosan on physical and chemical processes during bread baking and staling

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The objective of this research was to investigate the effect of chitosan on the interaction of water with bread ingredients and on the rate of staling. The changes in freezable bound water and total water contents in bread crumb were assessed by differential scanning calorimetry from water melting and evaporation endothermic peak areas. It was found that freezable water content and total water content in bread crumb decrease during staling more rapidly in the presence of chitosan. The weak interaction of freezable water with protein and starch polymeric chains in bread crumb becomes stronger, but the interaction of nonfreezable bound water with protein and starch molecules in bread crumb becomes weaker in the course of staling during bread storage. Two stages of bread crumb staling were indicated. Chitosan increases the rate of bread staling during both stages. It was suggested that during bread staling chitosan increases water migration rate from crumb to crust, prevents amylose-lipid complexation, and increases dehydration rate both for starch and gluten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muzzarelli RAA (1978) Chitin. Pergamon Press, Oxford

    Google Scholar 

  2. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chem Rev 104:6017–6084

    Article  Google Scholar 

  3. Preuss HG, Kaats GR (2006) Curr Nutr Food Sci 2:297–311

    Article  CAS  Google Scholar 

  4. Knorr D (1982) J Food Sci 47:593–595

    Article  CAS  Google Scholar 

  5. Coma V, Deschamps A|, Martial-Gros A (2003) J Food Sci 68:2788–2782

    Article  CAS  Google Scholar 

  6. Fernandez-Saiz P, Ocio MJ, Lagaron JM (2006) Biopolymers 6:577–583

    Article  CAS  Google Scholar 

  7. Synowiecki J, Al-Khateeb NA (2003) Crit Rev Food Sci Nutr 43:145–171

    Article  CAS  Google Scholar 

  8. Tsujikawa T, Kanauchi O, Andoh A, Saotome T, Sasaki M, Fujiyama Y, Bamba T (2003) Nutrition 19:137–139

    Article  CAS  Google Scholar 

  9. Muzzarelli RAA (1997) Cell Mol Life Sci 53:131–140

    Article  CAS  Google Scholar 

  10. Barreteau H, Delattre C, Michaud P (2006) Food Technol Biotechnol 44:323–333

    CAS  Google Scholar 

  11. Silano M, Vincentini O, Muzzarelli RAA, Muzzarelli C, De Vincenzi M (2004) Carbohydr Polym 58:215–219

    Article  CAS  Google Scholar 

  12. Bokura H, Kobayashi S (2003) Eur J Clin Nutr 57(5):721–725

    Article  CAS  Google Scholar 

  13. Tai TS, Sheu WH, Lee WJ, Yao HT, Chiang MT (2000) Diabetes Care 23(11):1703–1704

    Article  CAS  Google Scholar 

  14. Pittler MH, Abbot NC, Harkness EF, Ernst E (1999) Eur J Clin Nutr 53(5):379–381

    Article  CAS  Google Scholar 

  15. Hayashi K, Ito M (2002) Biol Pharm Bull 25(2):188–192

    Article  CAS  Google Scholar 

  16. Metso S, Ylitalo R, Nikkila M, Wuolijoki E, Ylitalo P, Lentimaki T (2003) Eur J Clin Pharmacol 59(10):741–746

    Article  CAS  Google Scholar 

  17. Ausar SF, Morcillo M, León AE, Ribotta PD, Masih R, Vilaro Mainero M, Amigone JL, Rubin G, Lescano C, Castagna LF, Beltramo DM, Diaz G, Bianco ID (2003) J Med Food 6(4):397–399

    Article  CAS  Google Scholar 

  18. Gray JA, Bemiller JN (2003) Compr Rew Food Sci Food Saf 2:1–21

    Article  CAS  Google Scholar 

  19. Schiraldi A, Fessas D (2001) Mechanism of staling: an overview. In: Chinachoti P, Vodovotz Y (eds) Bread staling, CRC Press, Boco Raton pp 1–17

    Google Scholar 

  20. Agrawal AM, Manek RV, Kolling WM, Neau SH (2003) AAPS Pharm Sci Technol 4:4

    Article  Google Scholar 

  21. Nakamura K, Hatakeyama T, Hatakeyama H (1983) Polymer 24:871–876

    Article  CAS  Google Scholar 

  22. McCrystal CB, Ford JL, Rajabi-Siahboomi AR (1997) Thermochim Acta 294:91–98

    Article  CAS  Google Scholar 

  23. Sun WO (2000) Plant Physiol 124:1203–1215

    Article  CAS  Google Scholar 

  24. Vertucci CW (1990) Biophys J 58:1463–1471

    Article  Google Scholar 

  25. Wolfe J, Bryant G, Koster L (2002) CryoLetters 23:157–166

    Google Scholar 

  26. Bechtel WG, Meisner DF (1954) Cereal Chem 31:176–181

    CAS  Google Scholar 

  27. Lagendijk J, Pennings HJ (1970) Cereal Sci Tod 15:354–359

    Google Scholar 

  28. Schiraldi A, Piazza L, Riva M (1996) Cereal Chem 73:32–37

    CAS  Google Scholar 

  29. Ferrigno, Acampa I, Martinez-Rodriguez A, Fogliano V (2005) Del Castillo MD COST Action 927: Thermally Processed Foods; Hamburg Meeting, September 23–24, 2005, p 32

Download references

Acknowledgments

This work was carried out in the 6th Framework Programme CRAFT project “New chitosan formulations for the prevention and treatment of diseases and dysfunctions of the digestive tract (hypercholesterolemia, overweight, ulcerative colitis and celiac diseases)”. We have greatly appreciated the support of Mario Pergolini in SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry Kerch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerch, G., Rustichelli, F., Ausili, P. et al. Effect of chitosan on physical and chemical processes during bread baking and staling. Eur Food Res Technol 226, 1459–1464 (2008). https://doi.org/10.1007/s00217-007-0677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0677-x

Keywords

Navigation