Skip to main content
Log in

Antioxidant properties and sensory quality of traditional rye bread as affected by the incorporation of flour with different extraction rates in the formulation

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The sensory quality of breads formulated on dark and brown rye flour incorporation (extraction rate of 100 and 92%, respectively) was compared using descriptive analysis and hedonic test. Two kinds of the respective rye breads were also analysed for total phenolic compounds (TPC), profile of phenolic acids, total flavonoids (TF), tocopherols (T) and tocotrienols (T3), inositol hexaphosphate (IP6) and reduced glutathione (GSH) contents. The antioxidant properties of 80% methanol bread extracts were evaluated as free radical scavenging activities against ABTS•+ radical cation (TEAC) and 2,2-diphenyl-1-picryhydrazyl radical (DPPH RSA) while PBS bread extracts were used for evaluation of free radical scavenging activities against superoxide anion radicals (O −•2 ) (SOD-like activity). The results showed that profiles of both kinds of bread were similar although the bread made from 100% rye flour was a bit more intense in all sensory attributes except from the acid odour, salty taste and acid taste. Among 13 attributes only the intensity of only one of them described as “honey odour” (2-phenylacetaldehyde) was statistically significant (F = 4.61, P < 0.05). In the overall quality test the bread with extraction rate of 100 and 92% obtained the scores of 7.51 and 6.68 units, respectively (in the scale of ten units). This small difference in the overall quality of bread samples was suggested to be associated with a higher level of TPC, especially caffeic acid, a higher content of T, T3 and IP6 noted in bread based on whole meal flour but not with their free radical scavenging activities. Rye bread based on dark flour showed higher TEAC by 24% than bread based on brown flour. In contrast, bread based on brown flour appeared 33% richer in DPPH RSA in comparison to the DPPH RSA of bread formulated on whole meal flour. No differences were observed in SOD-like activity of the two types of bread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Faostat data (2006) http://www.faostat.fao.org

  2. Steller W (1995) In: Poutanen K, Autio K (eds) Proceedings of VTT symposium, international rye symposium: technology and products, Helsinki, 7–8 December, Espoo, pp 194–200

  3. Zieliński H, Kozłowska H, Lewczuk B (2001) Inn Food Sci Emerg Technol 2/3:159–169

    Article  Google Scholar 

  4. Decock P, Cappelle S (2005) Trends Food Sci Technol 16:113–120

    Article  CAS  Google Scholar 

  5. Heinio R-L, Katina K, Wilhelmson A, Myllymaki O, Rajamaki T, Latva-Kala K, Liukkonen K-H, Poutanen K (2003) Lebensm Wiss Technol 36:533–545

    Article  CAS  Google Scholar 

  6. Hellemann U, Powers JJ, Salovaara H, Shinholser K, Ellila M (1988) J Sensory Stud 3:95–111

    Article  CAS  Google Scholar 

  7. Hellemann U (1992) Int J Food Sci Technol 27(2):201–211

    CAS  Google Scholar 

  8. Heinio R-L, Urala N, Vainionpaa J, Poutanen K, Tuorila H (1997) Int J Food Sci Technol 32:169–178

    Article  CAS  Google Scholar 

  9. Kirchhoff E, Schieberle P (2001) J Agric Food Chem 49(9):4304–4311

    Article  CAS  Google Scholar 

  10. Kariluoto S, Vahteristo L, Salovaara H, Katina K, Liukkonen KH, Piironen V (2004) Cereal Chem 81(1):134–139

    Article  CAS  Google Scholar 

  11. Andreasen MF, Christensen LP, Meyer AS, Hansen A (2000) J Agric Food Chem 48:2837–2842

    Article  CAS  Google Scholar 

  12. Rada-Mendoza M, Garcia-Banos JL, Villamiel M, Olano A (2004) J Cereal Sci 39:167–173

    Article  CAS  Google Scholar 

  13. Morales FJ, Jimenez-Perez S (2000) Food Chem 72(1):119–125

    Article  Google Scholar 

  14. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR (2001) Trends Food Sci Technol 11:340–346

    Article  Google Scholar 

  15. Ditrich R, El-Massry F, Kunz K, Rinaldi F, Peich C, Beckmann MW, Pischetsrieder M (2003) J Agric Food Chem 51:3900–3904

    Article  Google Scholar 

  16. Nicoli MC, Anese M, Parpinel MT, Franceschi S, Lerici CR (1997) Cancer Lett 114:71–74

    Article  CAS  Google Scholar 

  17. AACC (2000) Approved methods of the American association of cereal chemists, 10th edn. American Association of Cereal Chemists Inc, St. Paul (Minnesota)

  18. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, pp 777–779

  19. ISO/DIS (1998) Sensory analysis—methodology—general guidance for establishing a sensory profile, p 13299

  20. ISO (1993) Sensory analysis—general guidance for the selection, training and monitoring of assessors—part 1: selected assessors, p 8586

  21. ISO (1998) Sensory analysis—general guidance for the design of test rooms, p 8589

  22. Shahidi F, Naczk M (1995) In: Shahidi F, Naczk M (eds) Food phenolic: sources, chemistry, effects and applications. Technomic Publishing Company, Lancaster, pp 287–293

  23. Jia Z, Tang M, Wu J (1998) Food Chem 64:555–559

    Google Scholar 

  24. Amarowicz R, Weidner S (2001) Czech J Food Sci 19:201–205

    CAS  Google Scholar 

  25. Paterson DM, Qureshi AA (1993) Cereal Chem 70:157–162

    Google Scholar 

  26. Sandberg AS, Ahderinne R (1986) J Food Sci 51:547–550

    Article  CAS  Google Scholar 

  27. Sandberg AS, Carlsson NG, Svanberg U (1989) J Food Sci 54:159–161

    Article  CAS  Google Scholar 

  28. Smith IK, Vierheller TL, Thorne CA (1988) Anal Biochem 175:408–413

    Article  CAS  Google Scholar 

  29. Hissin J, Hilf R (1976) Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  30. Zieliński H, Honke J, Troszyńska A, Kozłowska H (1999) Cereal Chem 76:944–948

    Article  Google Scholar 

  31. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Biol Med 26:1291–1237

    Article  Google Scholar 

  32. Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm Wiss Technol 28:25–30

    CAS  Google Scholar 

  33. Smith PK, Krohn RI, Hermanson GT, Macia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  34. Stone H, Sidel JL (1993) In: Stone H, Sidel JL (eds) Sensory evaluation practices, 2nd edn. Academic Press, San Diago, pp 202–242

  35. Lawless HT, Heymann H (1999) In: Lawless HT, Heymann H (eds) Sensory evaluation of food: principles and practices. Kluwer/Plenum Publishers, New York, pp 341–372

  36. Marklinder I, Johansson L, Haglund A, Nagel-Held B, Seilbel (1996) Food Qual Prefer 3:275–284

    Article  Google Scholar 

  37. Marklinder I, Haglund A, Johansson L (1996) Food Qual Prefer 3:285–292

    Article  Google Scholar 

  38. Heinio RL, Liukkonen KH, Katina K, Myllymaki O, Poutanen K (2003) Lebensm Wiss Technol 36:577–583

    Article  CAS  Google Scholar 

  39. Gobbetti M, Simonetti A, Corsetti A, Santinelli F, Rossi J, Damiani P (1995) Food Microbiol 12:497–507

    Article  CAS  Google Scholar 

  40. Hansen A, Schiberle P (2005) Trends Food Sci Technol 16:85–94

    Article  CAS  Google Scholar 

  41. Hansen HB, Andersen MF, Nielsen MM, Larsen LM, Bach-Knudsen KE, Meyer AS, Christensen LP, Hansen A (2002) Eur Food Res Technol 214:33–42

    Article  CAS  Google Scholar 

  42. Michalska A, Zieliński H (2006) Pol J Food Nutr Sci 15/56:297–303

    Google Scholar 

  43. Mattila P, Pihlava J-M, Hellstrom J (2005) J Agric Food Chem 53(21):8290–8295

    Article  CAS  Google Scholar 

  44. Slavin JL (2000) J Am Coll Nutr 19:300–307

    Google Scholar 

  45. Andlauer W, Furst P (1999) Cereal Foods World 44:76–78

    Google Scholar 

  46. Hofius D, Sonnewald U (2003) Trends Plants Sci 8:6–8

    Article  CAS  Google Scholar 

  47. Katina K, Arendt E, Liukkonen KH, Autio K, Flander L, Poutanen K (2005) Trends Food Sci Technol 16:104–112

    Article  CAS  Google Scholar 

  48. Garcia-Estepa RM, Guerra-Hernandez E, Garcia-Villanova B (1999) Food Res Int 32:217–221

    Article  CAS  Google Scholar 

  49. Plaami S (1997) Lebensm Wiss Technol 30:633–647

    Article  CAS  Google Scholar 

  50. Li W, Bollecker SS, Schofield JD (2004) J Cereal Sci 39:205–212

    Article  CAS  Google Scholar 

  51. Schofield JD, Chen X (1995) J Cereal Sci 21:127–136

    Article  CAS  Google Scholar 

  52. Liukkonen K-H, Katina K, Wilhelmsson A, Myllymaki O, Lampi A-M, Kariluoto S, Piironen V, Heinonen S-M, Nurmi T, Adlercreutz H, Peltoketo A, Pihlava J-M, Hietaniemi V, Poutanen K (2003) Proc Nutr Soc 62:117–122

    Article  CAS  Google Scholar 

  53. Attar F, Keyhani E, Keyhani J (2006) Appl Biochem Micro 42:101–106

    Article  CAS  Google Scholar 

  54. Fattman CL, Schaefer LM, Oury TD (2003) Free Rad Biol Med 35:236–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge research grant No. PBZ-KBN-094/P06/2003/13 from the Polish State Committee for Scientific Research. This article is a part of the Ph.D. thesis of A. Michalska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Zieliński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zieliński, H., Michalska, A., Ceglińska, A. et al. Antioxidant properties and sensory quality of traditional rye bread as affected by the incorporation of flour with different extraction rates in the formulation. Eur Food Res Technol 226, 671–680 (2008). https://doi.org/10.1007/s00217-007-0576-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0576-1

Keywords

Navigation