Skip to main content
Log in

A study on Saccharomyces cerevisiae and Candida utilis cell wall capacity for binding magnesium

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The capacity for binding magnesium by bakery's yeast strain Saccharomyces cerevisiae No. 102 (Pure Culture Collection, Faculty Food Technology, Warsaw) and fodder yeast strain Candida utilis (ATCC 9950) was investigated in media supplemented with that element. The capacities of C. utilis (ATCC 9950) and S. cerevisiae (No. 102) biomass for binding magnesium were not statistically different in the first 24 h. In the next 24 h of cultivation the cells of C. utilis (ATCC 9950) were still able to bind magnesium ions, whereas those of S. cerevisiae (No. 102) released a part of previously bound magnesium to the medium. The major part of magnesium bound by the cells of C. utilis (ATCC 9950) was accumulated in cytosole. It was opposite to the cells of bakery yeast S. cerevisiae (No. 102) that accumulated magnesium mainly in the cell wall. The cells of C. utilis (ATCC 9950) yeast were smaller and their cell walls were thinner as compared to those of S. cerevisiae (No. 102) yeast. The thickness of the external mannoprotein layers was similar in both strains analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mildred S, Seeling MD (2002) Contemporary Nutr 7:1

  2. Vandergrift B (1991) Bioplexes. In: Lyons LP (ed) Biotechnology in the feed industry. Proceedings of Alltech's Seventh Annual Symposium. Alltech Technical Publications, pp 159–168

  3. Spears JW (1996) Anim Feed Sci Technol 58:151–163

    Article  Google Scholar 

  4. Ashmed HD, Jeppsen RB (1993) In: 8th International Symposium: Trace microelements in man and animals, Abstracts Book: 55

  5. Fly AD, Izquierdo OA, Lowly KR, Baker DA (1989) Nutr Res 9:901–910

    Article  CAS  Google Scholar 

  6. Blackwell KJ, Singleton I, Tobin JM (1995) Appl Microbiol Biotechnol 43:579–580

    Article  CAS  Google Scholar 

  7. Liu GJ, Martin DK, Gardner RC, Ryan PR (2002) Microbiol Lett 213:231–237

    Article  CAS  Google Scholar 

  8. Mowll JL, Gadd GM (1984) J Gen Microbiol 130:279–284

    CAS  Google Scholar 

  9. Food and Drug Administration U.S. (2001) Center of Food Safety and Applied Nutrition. Office of Food Additive Safety

  10. Klein RD, Favreau MA (1995) The Candida species: biochemistry, molecular biology and industrial applications. In: Hui JM, Khachatourians G (eds) Food biotechnology: microorganisms. Wiley-Vch, New York, pp 297–337

  11. Kurtzmann CP (1998) Pichia E.C. Hansen emend. In: Kurtzmann CP, Fell JW (eds) The yeast, taxonomic study. Elsevier Science, New York, pp 314–315

    Google Scholar 

  12. Robinson RK, Batt CA, Patel PD (2000) Encyclopedia of food microbiology. Academic, New York, pp 252–360, 850–854

  13. Park JK, Lee JW, Jung JY (2003) Enzyme Microbiol Technol 33(4):371–485

    Article  CAS  Google Scholar 

  14. Walker GM (1994) Crit Rev Biotechnol 14(4):311–345

    CAS  Google Scholar 

  15. Norris PR, Kelly DP (1979) Dev Ind Microbiol 20:299–308

    Google Scholar 

  16. Suh JH, Kim DS, Yun JW, Song SK (1998) Biotechnol Lett 20:153–156

    Article  CAS  Google Scholar 

  17. Walker GM, Maynard IA (1996) Enzyme Microb Technol 18:455–456

    Article  CAS  Google Scholar 

  18. Blazejak S, Duszkiewicz-Reinhard W, Gniewosz M, Rostkowska-Demner E, Domurad E (2002) Electron J Pol Agric Univ Food Sci Technol 5:2

    Google Scholar 

  19. Duncan E, Setze E, Lehmann J (2003) Isolation of genomic DNA. In: Bowien B, Dürre P (eds) Nucleic acid: isolation methods. American Scientific, Stevenson Ranch, CA, p 7

    Google Scholar 

  20. Reynolds ES (1963) J Cell Biol 17:208–212

    Article  CAS  Google Scholar 

  21. Rees EMR, Stewart GG (1997) J Inst Brew 103:287–291

    CAS  Google Scholar 

  22. Volesky B, May H, Holan GR (1993) Biotechnol Bioeng 41:826–829

    Article  CAS  Google Scholar 

  23. Walker GM, Duffus J (1980) J Cell Sci 42:329–356

    CAS  Google Scholar 

  24. Cameron I, Smith N (1989) Magnes Bull 8:31–44

    CAS  Google Scholar 

  25. Brady D, Stoll AD, Starke L, Duncan JR (1994) Biotechnol Bioeng 44:297–302

    Article  CAS  Google Scholar 

  26. Klis FM, Mol P, Hellingwerf K, Brul S (2002) FEMS Microbiol Rev 26:239–256

    Article  CAS  Google Scholar 

  27. Lipke PN, Ovalle R(1998) J Bacteriol 180:3735–3740

    CAS  Google Scholar 

  28. Volesky B, May H, Holan GR (1995) Appl Microbiol Biotechnol 42:797–806

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duszkiewicz-Reinhard Wanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Małgorzata, G., Stanisław, B., Joanna, R. et al. A study on Saccharomyces cerevisiae and Candida utilis cell wall capacity for binding magnesium. Eur Food Res Technol 224, 49–54 (2006). https://doi.org/10.1007/s00217-006-287-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-287-z

Keywords

Navigation