Skip to main content
Log in

Determination of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by using HPLC and spectrophotometric methods, and mathematical modeling of guaiacol production

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, easy detection of Alicyclobacillus acidoterrestris was performed by determination of guaiacol in apple juice. Guaiacol produced by A. acidoterrestris was determined by using HPLC, UV-Vis spectrophotometer, and Minolta spectrophotometer. Statistical analysis showed that the methods used for measuring the guaiacol concentrations were not significantly different (p > 0.05). Guaiacol formation in apple juice spiked with different levels of A. acidoterrestris spores was also analyzed using Gompertz, Logistic, and Richards models. In all cases, a good agreement between experimental data and fitted values was obtained. Using the modified Gompertz model, the derived biological parameters were calculated. Guaiacol formation rates (μ) and final guaiacol concentrations (A) were very similar in all cases, regardless of the initial A. acidoterrestris spore counts. However, lag phase durations (λ) were found to be dependent on the initial bacterial counts, and increased from 28.4 to 37.6 h, when initial inoculation level decreased from ∼103 to ∼101 cfu/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Deinhard G, Blanz P, Parolla K, Altan E (1987) Syst Appl Microbiol 10:47–53

    Google Scholar 

  2. Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K (1992) Int J Syst Bacteriol 42:263–269

    Article  CAS  Google Scholar 

  3. Lee SY, Dougherty RH, Kang DY (2002) Appl Environ Microbiol 68:4158–4161

    Article  CAS  Google Scholar 

  4. Walker M, Phillips CA (2005) Int J Food Sci Technol 40:557–562

    Article  CAS  Google Scholar 

  5. Yamazaki K, Teduka H, Shinano H (1996) Biosci Biotech Biochem 60:543–545

    Article  CAS  Google Scholar 

  6. Borlinghaus A, Engel R (1997) Flüssiges Obst 64:306–309

    Google Scholar 

  7. Jensen N (2000) Food Aust 52:282–285

    Google Scholar 

  8. Jensen N, Whitfield FB (2003) Lett Appl Microbiol 36:9–14

    Article  CAS  Google Scholar 

  9. Pettipher GL, Osmundson ME (2000) Food Aust 52:293–295

    Google Scholar 

  10. Chang SS, Kang DH (2004) Crit Rev Microbiol 30:55–74

    Article  Google Scholar 

  11. Pettipher GL, Osmundson ME, Murphy JM (1997) Lett Appl Microbiol 24:185–189

    Article  CAS  Google Scholar 

  12. Pinhatti MEMC, Variane S, Eguchi SY, Manfio GP (1997) Fruit Process 9:350–353

    Google Scholar 

  13. Bahceci KS, Gökmen V, Serpen A, Acar J (2003) Eur Food Res Technol 217:249–252

    Article  CAS  Google Scholar 

  14. Splittstoesser DF, Lee CY, Churey JJ (1998) Dairy Food Environ Sanit 18:585–587

    Google Scholar 

  15. Walls I, Chuyate R (2000) J AOAC Int 83:1115–1120

    CAS  Google Scholar 

  16. Chang S, Kang DH (2005) J Appl Microbiol 99:1051–1060

    Article  CAS  Google Scholar 

  17. Previdi MP, Colla F, Vicini E (1995) Industrial Conserve 70:128–132

    Google Scholar 

  18. Bahceci KS, Gökmen V, Acar J (2005) Fruit Process 5:328–331

    Google Scholar 

  19. Orr R, Beuchat LR (2000) J Food Protect 63:1117–1122

    CAS  Google Scholar 

  20. Niwa M, Kawamoto A (2003) Fruit Process 2:102–107

    Google Scholar 

  21. Bahceci KS, Gökmen V, Serpen A, Acar J (2005) Eur Food Res Technol 220:196–199

    Article  CAS  Google Scholar 

  22. Silva FM, Gibbs P, Vieira MC, Silva CLM (1999) Int J Food Microbiol 51:95–103

    Article  CAS  Google Scholar 

  23. Deinhard G, Blanz P, Parolla K, Altan E (1987) Syst Appl Microbiol 10:47–53

    Google Scholar 

  24. Silva FVM, Gibbs P, Silva CLM (2000) Fruit Process 4:138–141

    Google Scholar 

  25. Farrand SG, Linton JD, Stephenson RJ, MacCarthy WV (1983) Arch Microbiol 135:272–275

    Article  CAS  Google Scholar 

  26. Cerrutti P, Alzamora SM, Vidales SL (1997) J Food Sci 62:608–610

    Article  CAS  Google Scholar 

  27. Lopez-Malo A, Alzamora SM, Argaiz A (1998) J Food Sci 63:143–146

    Article  CAS  Google Scholar 

  28. Fitzgerald DJ, Stratford M, Narbad A (2003) Int J Food Microbiol 2708:1–10

    Google Scholar 

  29. Bahceci KS, Serpen A, Gökmen V, Acar J (2005) J Food Eng 66:187–192

    Article  Google Scholar 

  30. Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K (1990) Appl Environ Microbiol 56:1875–1881

    Google Scholar 

  31. Erkmen O, Alben E (2002) J Food Eng 52:161–166

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Hacettepe University Scientific Researches Unit (Project no. 01.01.602.001) for financial support. They are also grateful to Yelda Zencir and Selin Heybeli for their help in performing the spectrophotometric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Savaş Bahçeci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahçeci, K.S., Acar, J. Determination of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by using HPLC and spectrophotometric methods, and mathematical modeling of guaiacol production. Eur Food Res Technol 225, 873–878 (2007). https://doi.org/10.1007/s00217-006-0495-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0495-6

Keywords

Navigation