Skip to main content

Advertisement

Log in

Investigation of the use of rolling circle amplification for the detection of GM food

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

We describe a study on the use of rolling circle amplification (RCA) for detecting GM event-specific motifs within short PCR amplicons, synthetic oligonucleotides, and extracted plant genomic DNA targets, as an alternative to the polymerase chain reaction (PCR). PCR-based detection has limitations that include the cost of reagents and equipment, and the potential for erroneous amplification of a contaminant. Our results reveal that RCA enables discrimination between the wild type (wt) and GM motifs when the sequences are within short PCR amplicons or synthetic oligonucleotides, but not within plant genomic DNA. These findings highlight the potential problem with implying the success of an assay when illustrated using model systems, rather than with the plant genomic target DNAs. The GM motifs selected for our studies were within Roundup ReadyTM Soya (RRS) and MON810 maize. Although knowledge of the target sequence is a prerequisite for the function of this assay, the potential of using RCA is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Demidov VV (2002) Expert Rev Mol Diagn 2:542–548

    Article  CAS  Google Scholar 

  2. Pickering J, Bamford A, Godbole V, Briggs J, Scozzafava G, Roe P, Wheeler C, Ghouze F, Cuss S (2002) Nucleic Acids Res 30:e60

    Article  Google Scholar 

  3. Alsmadi OA, Bornarth CJ, Song W, Wisniewski M, Du J, Brockman JP, Faruqi AF, Hosono S, Sun Z, Du Y, Wu X, Egholm M, Abarzua P, Lasken RS, Driscoll MD (2003) BMC Genomics 4:21–38

    Article  Google Scholar 

  4. Larsson C, Koch J, Nygren A, Janssen G, Raap AK, Landergren U, Nilsson M (2004) Nat Methods 1:227–232

    Article  CAS  Google Scholar 

  5. Burns MJ, Valdivia H, Harris N (2004) Anal Bioanal Chem 378:1616–1623

    Article  CAS  Google Scholar 

  6. Taverniers I, Windels P, Van Bockstaele E, De Loose M (2001) Eur Food Res Technol 213:417–424

    Article  CAS  Google Scholar 

  7. Hubner P, Waiblinger HU, Pietsch K, Brodmann P (2001) J AOAC Int 84:1855–1864

    CAS  Google Scholar 

  8. Hernandez M, Pla M, Esteve T, Prat S, Puigdomenech P, Ferrando A (2003) Transgenic Res 12:179–189

    Article  CAS  Google Scholar 

  9. Taverniers I, Van Bockstaele E, De Loose M (2004) Anal Bioanal Chem 378:1198–1207

    Article  CAS  Google Scholar 

  10. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Nat Genet 19:225–232

    Article  CAS  Google Scholar 

  11. Nelson JR, Cai YC, Giesler TL, Farchaus JW, Sundaram ST, Ortiz-Rivera M, Hosta LP, Hewitt PL, Mamone JA, Palaniappan C, Fuller CW (2002) Biotechniques Suppl:44–47

  12. Frieden M, Pedroso E, Kool ET (1999) Angew Chem Int Ed Engl 38:3654–3657

    Article  CAS  Google Scholar 

  13. Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Genome Res 11:1095–1099

    Article  CAS  Google Scholar 

  14. Westin L, Xu X, Miller C, Wang L, Edman CF, Nerenberg M (2000) Nat Biotechnol 18:199–204

    Article  CAS  Google Scholar 

  15. Nallur G, Luo C, Fang L, Cooley S, Dave V, Lambert J, Kukanskis K, Kingsmore S, Lasken R, Schweitzer B (2001) Nucleic Acids Res 29:e118

    Article  CAS  Google Scholar 

  16. Wang G, Maher E, Brennan C, Chin L, Leo C, Kaur M, Zhu P, Rook M, Wolfe JL, Makrigiorgos GM (2004) Genome Res 14:2357–2366

    Article  CAS  Google Scholar 

  17. Faruqi AF, Hosono S, Driscoll MD, Dean FB, Alsmadi O, Bandaru R, Kumar G, Grimwade B, Zong Q, Sun Z, Du Y, Kingsmore S, Knott T, Lasken RS (2001) BMC Genomics 2:4

    Article  CAS  Google Scholar 

  18. Nilsson M, Gullberg M, Dahl F, Szuhai K, Raap AK (2002) Nucleic Acids Res 30:e66

    Article  Google Scholar 

  19. Qi X, Bakht S, Devos KM, Gale MD, Osbourn A (2001) Nucleic Acids Res 29:e116

    Article  CAS  Google Scholar 

  20. Detter JC, Jett JM, Lucas SM, Dalin E, Arellano AR, Wang M, Nelson JR, Chapman J, Lou Y, Rokshar D, Hawkins TL, Richardson PM (2002) Genomics 80:691–698

    Article  CAS  Google Scholar 

  21. Dahl F, Baner J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M (2004) Proc Natl Acad Sci U S A 101:4548–4553

    Article  CAS  Google Scholar 

  22. Esteban JA, Salas M, Blanco L (1993) J Biol Chem 268:2719–2726

    CAS  Google Scholar 

  23. de Vega M, Blanco L, Salas M (1998) J Biol Chem 273:28966–28977

    Article  CAS  Google Scholar 

  24. Szemes M, Bonants P, de Weerdt M, Baner J, Landegren U, Schoen CD (2005) Nucleic Acids Res 33:e70

    Article  Google Scholar 

  25. Baner J, Isaksson A, Waldenstrom E, Jarvius J, Landegren U, Nilsson M (2003) Nucleic Acids Res 31:e103

    Article  CAS  Google Scholar 

  26. Hardenbol P, Yu F, Belmont J, Mackenzie J, Bruckner C, Brundage T, Boudreau A, Chow S, Eberle J, Erbilgin A, Falkowski M, Fitzgerald R, Ghose S, Iartchouk O, Jain M, Karlin-Neumann G, Lu X, Miao X, Moore B, Moorhead M, Namsaraev E, Pasternak S, Prakash E, Tran K, Wang Z, Jones HB, Davis RW, Willis TD, Gibbs RA (2005) Genome Res 15:269–275

    Article  CAS  Google Scholar 

  27. Hardenbol P, Baner J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, Fakhrai-Rad H, Ronaghi M, Willis TD, Landegren U, Davis RW (2003) Nat Biotechnol 21:673–678

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the United Kingdom Food Standards Agency. We thank Mr. Hernan Valdivia for extracting genomic DNA from soybean and maize-certified reference materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, S., Qureshi, F., Shanahan, D. et al. Investigation of the use of rolling circle amplification for the detection of GM food. Eur Food Res Technol 225, 59–66 (2007). https://doi.org/10.1007/s00217-006-0382-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0382-1

Keywords

Navigation