Skip to main content
Log in

Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenyl glycol from olive oil waste

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Two different processes have been developed for the recovery of hydroxytyrosol (HT) and 3,4-dihydroxyphenyl glycol (DHPG) from olive oil mills waste. The antioxidant activity of several effluents has been characterised by four “in vitro” tests: antiradical capacity (ARC), ferric reducing power (P R) and inhibition of primary and secondary oxidation in lipid systems. HT-containing effluents exhibited higher or similar activity in ARC and P R than equimolecular quantities of vitamins E and C. In oxidative tests they were between both assayed vitamins. Except for commercial Hytolive®2, activities correlated with HT concentration of each sample. DHPG-containing effluent had higher activities than a solution with the same concentration of the synthetic DL-DHPG. This effluent was the most active in ARC and P R tests, its activity being similar to vitamin E in the inhibition of primary oxidation. Both phenolic compounds showed antagonist effect when they coeluted, except for P R assay. These results suggested that due to the low-cost procedure and to the antioxidant activity of effluents, they could be valuable as natural additives for food, pharmaceutical and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HT:

hydroxytyrosol

DHPG:

3,4-dihydroxyphenyl glycol

DPPH:

2,2-diphenyl-1-picrylhydrazyl (free radical)

ABAP:

2,2′-azobis(2-amidinopropane) dihydrochloride

SDS:

sodium dodecylsulphate

RT:

retention time

EC50 :

amount of antioxidant necessary to decrease the initial absorbance by 50%

EC25 :

amount of antioxidant necessary to decrease the initial absorbance by 25%

ARC:

antiradical capacity

P R :

reducing power

QE:

quercetin equivalent

POIC:

primary oxidation inhibition capacity

TBARS:

thiobarbituric acid reactive species

R :

correlation coefficient

References

  1. Owen RW, Haubner R, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H (2003) Isolation, structure, elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food Chem Toxicol 41:703–717. doi: 10.1016/S0278-6915(03)00011-5

    Article  CAS  Google Scholar 

  2. Pérez-Jiménez F (2005) International conference on the healthy effect of virgin olive oil. Eur J Clin Invest 35:421–424. doi: 10.1111/j.1365-2362.2005.01516.x

    Article  Google Scholar 

  3. Tuck KL, Hayball PJ (2002) Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem 13:636–644. doi: 10.1016/S0955-2863(02)00229-2

    Article  CAS  Google Scholar 

  4. Aruoma OI (2003) Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat Res–Fundam Mol Mech Mutagen 523:9–20

    Article  Google Scholar 

  5. Covas MI, de la Torre K, Farré-Albaladejo M, Kaikkonen J, Fitó M, López-Sabater C, Pujadas-Bastardes MA, Joglar J, Weinbrenner T, Lamuela-Raventós RM, de la Torre R (2006) Postpandrial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radic Biol Med 40:608–616. doi: 10.1016/j.freeradbiomed.2005.09.027

    Article  CAS  Google Scholar 

  6. Pazos M, Alonso A, Fernández-Bolaños J, Torres JL, Medina I (2006) Physicochemical properties of natural phenolics from grapes and olive oil byproducts and their antioxidant activity in frozen horse mackerel fillets. J Agric Food Chem 54:366–373. doi: 10.1021/jf0518296

    Article  CAS  Google Scholar 

  7. Romero C, Brenes M, García P, Garrido A (2002) Hidroxytyrosol 4-β-glucoside an important phenolic compounds in olive fruit and derived product. J Agric Food Chem 50:3835–3839. doi: 10.1021/jf011485t

    Article  CAS  Google Scholar 

  8. Ryan D, Antolovich M, Prenzler P, Robards K, Lavee S (2002) Biotransformation of phenolic compounds in Olea europaea L. Sci Hortic 92:147–176. doi: 10.1016/S0304-4238(01)00287-4

    Article  CAS  Google Scholar 

  9. Fabiani R, De Bartolomeo A, Rosignoli P, Servili M, Montedoro GF, Morozzi G (2002) Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Eur J Cancer Prev 11:351–358

    Article  CAS  Google Scholar 

  10. Visioli F, Grande S, Bogan P, Galli C (2004) The role of antioxidants in the Mediterranean diets: focus on cancer. Eur J Cancer Prev 13:337–343

    Article  CAS  Google Scholar 

  11. Carrasco-Pancorbo A, Cerretani L, Bendini A, Segura-Carretero A, Del Carlo M, Gallina-Toschi T, Lercker G, Compagnone D, Fernández-Gutierrez A (2005) Evaluation of antioxidant capacity of individual phenolic compounds in virgin olive oil. J Agric Food Chem 53:8918–8925. doi: 10.1021/jf0515680

    Article  CAS  Google Scholar 

  12. Morello JR, Vuorela S, Romero MP, Motilva MJ, Heinonen (2005) Antioxidant activity of olive pulp and olive oil phenolic compounds of the arbequina cultivar. J Agric Food Chem 53:2002–2008. doi: 10.1021/jf048386a

    Article  CAS  Google Scholar 

  13. Miró-Casas E, Covas MI, Farre M, Fito M, Ortuño J, Weinbrenner T, Roset P, de la Torre R (2003) Hydroxytyrosol disposition in humans. Clin Chem 49:945–951. doi: 10.1373/49.6.945

    Article  Google Scholar 

  14. Cuomo J, Rabovskiy AB (2001) Antioxidant compositions extracted from olives and olive by-products. Patent no. WO0145514

  15. Crea R (2002) Method of obtaining a hydroxytyrosol-rich composition from vegetation water. Patent no. WO0218310

  16. Bai C, Yan X, Takenaka M, Sekiya K, Nagata T (1998) Determination of synthetic hydroxytyrosol in rat plasma by CG-MS. J Agric Food Chem 46:3998–4001. doi: 10.1021/jf980451r

    Article  CAS  Google Scholar 

  17. Espin JC, Tomás-Barberan FA, García MC, Ferreres F, Soler C, Wichers HJ (2002) Enzymatic synthesis of antioxidant hydroxytyrosol. Patent no. WO02016628

  18. Capasso R, Evidente A, Avolio S, Solla F (1999) A highly convenient synthesis of hydroxytyrosol and its recovery from agricultural waste waters. J Agric Food Chem 47:1745–1748. doi: 10.1021/jf9809030

    Article  CAS  Google Scholar 

  19. Visioli F, Romani A, Mulinacci N, Zarini S, Conte D, Vincieri FF, Galli C (1999) Antioxidant and other biological activities of olive oil mill waste water. J Agric Food Chem 47:3397–3401. doi: 10.1021/jf9900534

    Article  CAS  Google Scholar 

  20. Fernández-Bolaños J, Heredia A, Rodríguez G, Rodríguez R, Guillén R, Jiménez A (2002) Method for obtaining purified hydroxytyrosol from products and by-products derived from the olive tree. Patent no. WO02064537

  21. Fernández-Bolaños J, Rodríguez G, Rodríguez R, Heredia A, Guillen R, Jiménez A (2002) Production in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two-phase olive oil processing or “alperujo”. J Agric Food Chem 50:6804–6811. doi: 10.1021/jf011712r

    Article  Google Scholar 

  22. Bianchi G, Pozzi N (1994) 3,4-dihydroxyphenylglycol, a major C6-C2 phenolic in Olea europeae fruits. Phytochemistry 35:1335–1337. doi: 10.1016/S0031-9422(00)94849-0

    Article  CAS  Google Scholar 

  23. Allouche N, Fki I, Sayadi S (2004) Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J Agric Food Chem 52:267–273. doi: 10.1021/jf034944u

    Article  CAS  Google Scholar 

  24. Pieretti S, Digiannuario J, Capasso A, Nicoletti M (1992) Pharmacological effects of phenylpropanoid glycosides from Orobanche hederae. Phytother Res 6:89–93

    Article  CAS  Google Scholar 

  25. Andary C, Wylde R, Maury L, Heitz A, Dubourg A, Nishibe S (1994) X-ray analysis and extended NMR study of oraposide. Phytochemistry 37:855–857. doi: 10.1016/S0031-9422(00)90370-4

    Article  CAS  Google Scholar 

  26. Venneri MG, Del Rio G (2004) Systematic study of long-term stability of 3,4-dihydroxyphenylglycol in plasma for subsequent determination with liquid chromatography. J Chromatogr B 802:247–255. doi: 10.1016/j.jchromb.2003.08.010

    Article  CAS  Google Scholar 

  27. Rodríguez G (2005) Aprovechamiento integral del alperujo tratado térmicamente. Desarrollo de un sistema viable para la purificación del antioxidante natural hidroxitirosol. Doctoral Thesis, University of Seville, Spain

  28. Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276. doi: 10.1002/(SICI)1097-0010(199802)76

    Article  Google Scholar 

  29. Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1999) Free radical scavenging capacity of selected red, rosé and white wines. J Sci Food Agric 79:1301–1304. doi: 10.1002/(SICI)1097-0010(19990715)79

    Article  Google Scholar 

  30. Rodríguez R, Jaramillo S, Rodríguez G, Espejo JA, Guillén R, Fernández-Bolaños J, Heredia A, Jiménez A (2005) Antioxidant activity of ethanolic extracts from several asparagus cultivars. J Agric Food Chem 53:5212–5217. doi: 10.1021/jf050338i

    Article  Google Scholar 

  31. Psarra E, Makris DP, Kallithraka S, Kefalas P (2002) Evaluation of the antiradical and reducing properties of selected Greek white wines: correlation with polyphenolic composition. J Sci Food Agric 82:1014–1020. doi: 10.1002/jsfa.1124

    Article  CAS  Google Scholar 

  32. Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69:167–174. doi: 10.1016/S0308-8146(99)

    Article  CAS  Google Scholar 

  33. Miguel G, Simoes M, Figueiredo AC, Barroso JG, Pedro LG, Carvalho L (2004) Composition and antioxidant activities of the essential oils of Thymus caespititus, Thymus camphoratus and Thymus mastichina. Food Chem 86:183–188. doi: 10.1016/j.foodchem.2003.08.031

    Article  CAS  Google Scholar 

  34. Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Domínguez H, Núñez MJ, Parajó JC (2001) Natural antioxidants from residual sources. Food Chem 72:145–171. doi: 10.1016/S0308-8146(00)00223-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank GENOSA for the supply of Hytolive®2. Financial support: Junta de Andalucía, Consejería de Innovación, Ciencia y Empresa (projects CAO01-006 and CO3-055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, G., Rodríguez, R., Fernández-Bolaños, J. et al. Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenyl glycol from olive oil waste. Eur Food Res Technol 224, 733–741 (2007). https://doi.org/10.1007/s00217-006-0366-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0366-1

Keywords

Navigation