Skip to main content

Advertisement

Log in

Influence of high-pressure–low-temperature treatments on fruit and vegetable quality related enzymes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Recently, high-pressure–low-temperature (HP-LT) treatments, succeeding a regular freezing unit operation, have been shown to inactivate micro-organisms. In this study, we have evaluated the influence of these treatments on the inactivation of quality-related enzymes. The effect of different pressure/temperature combinations (range 0.1–500 MPa/20 to −26 °C) on the activity of pectinmethylesterase, polygalacturonase, lipoxygenase, peroxidase and polyphenoloxidase in model systems, crude extracts and real-food systems was investigated.

Present results show that under these HP-LT processing conditions, no or limited enzyme inactivation is obtained for all enzyme systems studied, except for lipoxygenase which can be completely inactivated at high pressure in combination with low temperature. These data suggest that HP-LT treatments, although inactivating micro-organisms, fail to inactivate most food quality related enzymes. Therefore, a blanching unit operation (e.g. a conventional thermal blanching process prior to freezing) is required to prevent enzyme related quality degradation during frozen storage and cannot be replaced by an integrated freezing-HP-LT treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fennema O (1978) In: Crowe JH, Clegg JS (eds) Dry biological systems. Academic Press, New York, pp 297–322

  2. Reid DS (1999) In: Roos YH, Leslie RB, Lillford PJ (eds) Water management in the design and distribution of quality foods. Technical Publishing: Lancaster, pp 87–105

  3. Archer DL (2004) Int J Food Microbiol 90:127–138

    Article  Google Scholar 

  4. Cano MP (1996) In: Jeremiah LE (ed) Freezing effects on food quality. Marcel Dekker, New York, pp 247–298

  5. Zaritzky NE (2000) In: Kennedy CJ (ed) Managing frozen foods. Woodhead Publishing, Cambridge, UK, pp 111–135

  6. Kidmose U, Martens HJ (1999) J Sci Food Agric 79:1747–1753

    Article  CAS  Google Scholar 

  7. Lisiewska Z, Kmiecik W (2000) Food Chem 70:167–173

    Article  CAS  Google Scholar 

  8. Martins RC, Silva CLM (2004) J Food Eng 64:481–488

    Article  Google Scholar 

  9. Van Huystee RB (1987) Annu Rev Plant Physiol 38:205–219

    Article  CAS  Google Scholar 

  10. Anthon GE, Barrett DM (2003) Food Chem 81:275–279

    Article  CAS  Google Scholar 

  11. Van Buren JP (1979) J Text Stud 10:1–23

    Article  CAS  Google Scholar 

  12. Fachin D, Van Loey AM, Ly Nguyen B, Verlent I, Indrawati I, Hendrickx M (2003) Innov Food Sci Emerg Technol 4:135–142

    Article  CAS  Google Scholar 

  13. Weemaes CA, Ludikhuyze LR, Van den Broeck I, Hendrickx ME, Tobback PP (1998) Lebensm-Wiss Technol 31:44–49

    Article  CAS  Google Scholar 

  14. Kaack K (1994) Plant Foods Hum Nutr 46:353–360

    Article  CAS  Google Scholar 

  15. Préstamo G, Fuster C, Risueño MC (1998) J Sci Food Agric 77:223–229

    Article  Google Scholar 

  16. Arroqui C, Rumsey TR, Lopez A, Virseda P (2002) J Food Eng 52:25–30

    Article  Google Scholar 

  17. Song J-Y, An G-H, Kim C-J (2003) Food Chem 83:69–74

    Article  CAS  Google Scholar 

  18. Gómez FG, Sjöholm I (2004) Trends Food Sci Technol 15:39–43

    Article  CAS  Google Scholar 

  19. Kalichevsky MT, Knorr D, Lillford PJ (1995) Trends Food Sci Technol 6:253–259

    Article  CAS  Google Scholar 

  20. Li B, Sun D-W (2002) J Food Eng 54:175–182

    Article  Google Scholar 

  21. Benet GU, Schlüter O, Knorr D (2004) Innov Food Sci Emerg Technol 5:413–427

    Article  CAS  Google Scholar 

  22. LeBail A, Chevalier D, Mussa DM, Ghoul M (2002) Int J Refrigerat 25:504–513

    Article  CAS  Google Scholar 

  23. Luscher C, Balasa A, Fröhling A, Ananta E, Knorr D (2004) Appl Environ Microbiol 70:4021–4029

    Article  CAS  Google Scholar 

  24. Shen T, Benet GU, Brul S, Knorr D (2005) Innov Food Sci Emerg Technol 6:271–278

    Article  Google Scholar 

  25. Anese M, Nicoli MC, Dall'Aglio G, Lerici CR (1995). J Food Biochem 18:285–293

    Article  CAS  Google Scholar 

  26. Weemaes C, Ludikhuyze L, Van den Broeck I, Hendrickx M (1998). J Food Sci 63:873–877

    Article  CAS  Google Scholar 

  27. Weemaes CA, Ludikhuyze LR, Van den Broeck I, Hendrickx M (1998). Biotechnol Bioeng 60:292–300

    Article  CAS  Google Scholar 

  28. Indrawati I, Van Loey A, Ludihuyze LR, Hendrickx M (1999). J Agric Food Chem 47:2468–2474

    Article  CAS  Google Scholar 

  29. Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M (1999). J Agric Food Chem 47:1794–1800

    Article  CAS  Google Scholar 

  30. Weemaes C, Ludihuyze L, Van den Broek I, Hendrickx M (1999). J Food Sci 64:823–827

    Article  CAS  Google Scholar 

  31. Indrawati I, Van Loey A, Ludikhuyze LR, Hendrickx ME (2000). Biotechnol Prog 16:109–115

    Article  CAS  Google Scholar 

  32. Indrawati I, Ludikhuyze LR, Van Loey AM, Hendrickx ME (2000). J Agric Food Chem 48:1850–1859

    Article  CAS  Google Scholar 

  33. Tangwongchai R, Ledward DA, Ames JM (2000). J Agric Food Chem 48:2896–2902

    Article  CAS  Google Scholar 

  34. Van den Broeck I, Ludikhuyze LR, Van Loey AM, Hendrickx ME (2000). J Agric Food Chem 48:1960–1970

    Article  CAS  Google Scholar 

  35. Indrawati I, Van Loey AM, Ludikhuyze LR, Hendrickx ME (2001). J Food Sci 66:686–693

    Article  CAS  Google Scholar 

  36. Fachin D, Van Loey A, Indrawati I, Ludikhuyze L, Hendrickx M (2002). J Food Sci 67:1610–1615

    Article  CAS  Google Scholar 

  37. Ly-Nguyen B, Van Loey AM, Fachin D, Verlent I, Indrawati I, Hendrickx M (2002). J Agric Food Chem 50:5437–5444

    Article  CAS  Google Scholar 

  38. Ly-Nguyen B, Van Loey A, Fachin D, Verlent I, Hendrickx M (2002). Biotechnol Bioeng 78:683–691

    Article  CAS  Google Scholar 

  39. Ly-Nguyen B, Van Loey AM, Fachin D, Verlent I, Duvetter T, Vu ST, Smout C, Hendrickx ME (2002). Biotechnol Prog 18:1447–1450

    Article  CAS  Google Scholar 

  40. Ly-Nguyen B, Van Loey AM, Smout C, Ozcan SE, Fachin D, Verlent I, Vu ST, Duvetter T, Hendrickx ME (2003). J Food Sci 68:1377–1383

    Article  CAS  Google Scholar 

  41. Castro SM, Van Loey A, Saraiva JA, Smout C, Hendrickx M (2004). J Agric Food Chem 52:5724–5729

    Article  CAS  Google Scholar 

  42. Fachin D, Smout C, Verlent I, Ly-Nguyen B, Van Loey AM, Hendrickx ME (2004). J Agric Food Chem 52:2697–2703

    Article  CAS  Google Scholar 

  43. Seyderhelm I, Boguslawski S, Michaelis G, Knorr D (1996). J Food Sci 61:308–310

    Article  CAS  Google Scholar 

  44. Goodner JK, Braddock RJ, Parish ME (1998). J Agric Food Sci 46:1997–2000

    Article  CAS  Google Scholar 

  45. Shook CM, Shellhammer TH, Schwartz SJ (2001) J Agric Food Chem 49:664–668

    Article  CAS  Google Scholar 

  46. Gkinis AM, Fennema OR (1978) J Food Sci 43:527–531

    Article  CAS  Google Scholar 

  47. Préstamo G, Palomares L, Sanz P (2005) J Food Sci 70:S22–S27

    Google Scholar 

  48. Otero L, Ousegui A, Guignon B, LeBail A, Sanz P (2005). Food hydrocolloids. in press

  49. Van den Broeck I, Ludikhuyze LR, Weemaes CA, Van Loey AM, Hendrickx ME (1999) J Food Process Preserv 23:391–406

    Article  CAS  Google Scholar 

  50. de Araujo BS, de Oliveira JO, Machado SS, Pletsch M (2004) Plant Sci 167:1151–1157

    Article  CAS  Google Scholar 

  51. Soysal Ç, Söylemez Z (2004) J Food Eng 68:349–356

    Article  Google Scholar 

  52. Benet GU, Schlüter O, Knorr D (2004). Innov Food Sci Emerg Technol 5:413–427

    Article  CAS  Google Scholar 

  53. Indrawati I, Van Loey A, Denys S, Hendrickx M (1998) Food Biotechnol 12:263–277

    Article  CAS  Google Scholar 

  54. Fachin D, Van Loey AM, Ly-Nguyen B, Verlent I, Indrawati I, Hendrickx ME (2002). Biotechnol Prog 18:739–744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Project SAFE ICE (QLKI-2002–02230) from the Quality of Life and Management Resources Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Hendrickx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Buggenhout, S., Messagie, I., Van der Plancken, I. et al. Influence of high-pressure–low-temperature treatments on fruit and vegetable quality related enzymes. Eur Food Res Technol 223, 475–485 (2006). https://doi.org/10.1007/s00217-005-0227-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0227-3

Keywords

Navigation