Skip to main content
Log in

Physical properties and microstructure of commercial Som-fug, a fermented fish sausage

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Physical properties and the microstructure of Som-fug, a Thai-style fermented fish sausage, with seven different commercial brands were determined. The released water contents of Som-fug samples ranged from 5.81 to 15.81% and expressible water contents were different among the samples tested (p<0.05). Differences in hardness, fracturability, adhesiveness, springiness, cohesiveness and resilience were also observed. L*, a*, b* and whiteness varied with the samples. Overall, the samples had different acceptability in texture and color. Microstructural study revealed that Som-fug had a three-dimensional network. A more void and open structure correlated well with greater released water and was associated with lower hardness and cohesiveness. Therefore, the different physical properties and microstructure of Som-fug could be influenced by the differences in raw materials, ingredients, processing, and fermentation characteristics, and determined the acceptability of products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saisithi P, Wongkhalaung C, Boonyaratanakornkit M, Yongmanitchai P, Chimanage P, Maleehuan S (1986) Improvement of Thai traditional fermented fish product: Som-fug. Institute of Food Research and Product Development. Bangkok: Kasetsart University

  2. Valyasevi R, Rolle RJ (2002) Int J Food Microbiol 75:231–239

    Article  PubMed  Google Scholar 

  3. Työppönen S, Markkula A, Petäjä E, Suihko ML, Mattila-Sandholm T (2003) Food Cont 14:181–185

    Article  Google Scholar 

  4. Yin LT, Jiang ST (2001) J Food Sci 6:742–746

    Google Scholar 

  5. Østergaard A, Emberk PKB, Yamprayoon J, Wedell-Neergarrd W, Huss HH, Gram L (1998) Trop Sci 38:105–112

    Google Scholar 

  6. Paludan-Müller C, Huss HH, Gram L (1999) Int J Food Microbiol 46:219–229

    Article  PubMed  Google Scholar 

  7. Paludan-Müller C, Valyasevi R, Huss HH, Gram L (2002) J Appl Microbiol 92:307–314

    Article  PubMed  Google Scholar 

  8. Riebroy S, Benjakul S, Visessanguan W, Kijrongrojana K, Tanaka M. (2004) Food Chem 88:527–535

    Article  CAS  Google Scholar 

  9. Hagen BF, Berdague JL, Holck AL, Naes H, Blom H (1996) J Food Sci 61:1024–1029

    CAS  Google Scholar 

  10. Johansson G, Molly K, Greenen I, Demeyer D (1996) Lipolysis and proteolysis in meat fermentation. Report of the European AIR Project. In: Raemaekers M, Demeyer D (eds) Optimization of endogenous and bacterial metabolism for the improvement of safety and quality of fermented meat products. Lilehammer, pp 456–520

  11. Nakao Y, Konno A, Taguchi T, Tawada T, Kasai H, Toda J, Terasaki M (1991) J Food Sci 56:769–772, 776

    CAS  Google Scholar 

  12. Funami T. Yada H, Nakao Y (1998) Food Hydrocolloid 12:55–64

    Article  CAS  Google Scholar 

  13. Visessanguan W, Benjakul S, Riebroy S, Thepkasikul P (2004) Meat Sci 64:579–588

    Article  Google Scholar 

  14. AOAC (2000) Official methods of analysis, 17th ed. Association of Official Analytical Chemists, Gaithersburg, MD

    Google Scholar 

  15. Bourne MC (1978) Food Technol 32(7):62–66, 72

    Google Scholar 

  16. Jones KW, Mandigo RW (1982) J Food Sci 47:1930–1934

    Google Scholar 

  17. NFI (1991) A manual of standard methods for measuring, specifying the properties of surimi. National Fisheries Institute, Washington, DC

    Google Scholar 

  18. Chamber IVE, Wolf MB (1996) Sensory testing methods, 2nd edn. American Society for Testing and Materials, Philadelphia, USA

    Google Scholar 

  19. Meilgaard M, Civille GV, Carr BT (1990) Mutiple difference tests: Balanced Incomplete Block (BIB) designs. In: Meigaard M, Civille GV, Carr BT (eds) Sensory evaluation techniques. CRC Press, Florida, USA, pp 105–112

    Google Scholar 

  20. Steel RGD, Torrie JH (1980) Principle and procedure of statistics, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  21. Rosello C, Barbas JI, Berna A, Lopez N (1995) Meat Sci 40:379–385

    Article  Google Scholar 

  22. Offer G, Knight P (1988) The structural basis of water holding capacity in meat. In: Lawrie R (ed) Developments in meat science-4. Elsevier Applied Science, London, UK, pp 63–243

    Google Scholar 

  23. Zayas JF (1997) Water holding capacity of proteins. In: Zayas JF (ed) Functionalily of Proteins in Food. Springer-Verlag, Heidelberg, Germany, pp 76–133

    Google Scholar 

  24. Morrissey PA, Mulvihill DM, O’Neil EM (1987) Functional properties of muscle protein. In: Hudson BJF (ed) Developments in food proteins. Elsevier Applied Science, New York, USA, pp 195–256

    Google Scholar 

  25. Foegeding EA, Laneir T, Hultin HO (1996) Characteristics of edible muscle tissue. In: Fennema OR (ed) Food chemistry. Marcel Dekker, New York, USA, pp 879–942

    Google Scholar 

  26. Paraskevopoulou A, Kiosseoglou V (1997) J Food Sci 62:208–211

    CAS  Google Scholar 

  27. Gimeno O, Astiasarán I, Bello J (1999) J Agric Food Chem 47:873–877

    Article  CAS  PubMed  Google Scholar 

  28. Rongrong L, Capenter JA, Cheny R (1998) J Food Sci 63:923–929

    Google Scholar 

  29. Frethiem K, Egelandsdal B, Harbitz O, Samejima K (1985) Food Chem 18:169–178

    Article  Google Scholar 

  30. Venugopal V, Doke SN, Nair PM (1994) Food Chem 50:185–190

    Article  CAS  Google Scholar 

  31. Ziegler GR, Foegeding EA (1990) The gelation of proteins. In: Kinsella JE (ed) Advances in food and nutrition research, vol. 34. Academic Press, New York, pp 230–260

    Google Scholar 

  32. Stone AP, Stanley DW (1992) Food Res Int 25:381–388

    Article  CAS  Google Scholar 

  33. Matulis RJ, Mekeith FK, Sutherland JW, Susan BM (1995) J Food Sci 60:42–47

    CAS  Google Scholar 

  34. Mendoza E, García ML, Casas C, Selgas MD (2001) Meat Sci 57:387–393

    Article  CAS  Google Scholar 

  35. Barbut S, Maurer AJ, Lindsay RC (1988) J Food Sci 53:62–66

    CAS  Google Scholar 

  36. Seman DL, Olsen DG, Mandigo RW (1980) J Food Sci 45:1116–1121

    CAS  Google Scholar 

  37. Smith DM (1991) Factors influencing heat induced gelation of muscle proteins. In: Paris N, Bradford R (eds) Interactions of food proteins. American Chemical Society, Washington, DC, USA, pp 243–256

    Google Scholar 

  38. Stewart MR, Zipser MW, Watts BM (1965) J Food Sci 30:464–469

    CAS  Google Scholar 

  39. Faustman C, Cassens RG (1990) J Muscle Foods 1:217–243

    Google Scholar 

Download references

Acknowledgement

The authors thank the Prince of Songkla University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soottawat Benjakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riebroy, S., Benjakul, S., Visessanguan, W. et al. Physical properties and microstructure of commercial Som-fug, a fermented fish sausage. Eur Food Res Technol 220, 520–525 (2005). https://doi.org/10.1007/s00217-004-1094-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-004-1094-z

Keywords

Navigation