Skip to main content
Log in

Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose] monitored by high-performance liquid chromatography–tandem mass spectometric analyses

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Changes in betacyanin content and colour shade of juices from purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose] as affected by thermal processing and consecutive cold storage to allow pigment reconstitution were investigated. Pigments from purple pitaya displayed higher stability than earlier investigations on betalains suggested. A novel high-performance liquid chromatography method was established, allowing simultaneous detection of genuine pigments of purple pitaya juice together with their degradation products. In addition to previously described betanin cleavage products (betalamic acid, cyclo-dopa 5-O-β-glucoside) further degradation products generated after decarboxylation and/or dehydration of phyllocactin and hylocerenin, respectively, were found. Moreover, neobetanin was identified as a thermal degradation product of betanin for the first time. With this newly developed high-performance liquid chromatography method, heating of purple pitaya juice and a commercial pitaya juice concentrate was proven by the detection of thermal betacyanin degradation products that had not been described, so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pszczola DE (2003) Food Technol 57:52–63

    Google Scholar 

  2. Sloan AE (2003) Food Technol 57:26–36

    Google Scholar 

  3. (a) Stintzing FC, Schieber A, Carle R (2002) Food Chem 77:101–106: (b) Stintzing FC, Schieber A, Carle R (2002) Food Chem 77:517

  4. Stintzing FC, Conrad J, Klaiber I, Beifuss U, Carle R (2004) Phytochemistry 65:415–422

    Article  CAS  PubMed  Google Scholar 

  5. Wybraniec S, Platzner I, Geresh S, Gottlieb HE, Haimberg M, Mogilnitzki M, Mizrahi Y (2001) Phytochemistry 58:1209–1212

    Article  CAS  PubMed  Google Scholar 

  6. Wybraniec S, Mizrahi Y (2002) J Agric Food Chem 50:6086–6089

    Article  CAS  PubMed  Google Scholar 

  7. Czapski J (1985) Z Lebensm Unters Forsch 180:21–25

    CAS  Google Scholar 

  8. Czapski J (1990) Z Lebensm Unters Forsch 191:275–278

    CAS  Google Scholar 

  9. Havlíková L, Míková K, Kyzlink V (1983) Z Lebensm Unters Forsch 177:247–250

    Google Scholar 

  10. Saguy I (1979) J Food Sci 44:1554–1555

    CAS  Google Scholar 

  11. von Elbe JH, Maing I-Y, Amundson, CH (1974) J Food Sci 39:334–337

    Google Scholar 

  12. von Elbe JH, Schwartz SJ, Hildenbrand BE (1981) J Food Sci 46:1713–1715

    Google Scholar 

  13. Castellar R, Obón JM, Alacid M, Fernández-López JA (2003) J Agric Food Chem 51:2772–2776

    Article  CAS  PubMed  Google Scholar 

  14. Merin U, Gagel S, Popel G, Bernstein S, Rosenthal I (1987) J Food Sci 52:485–486

    CAS  Google Scholar 

  15. Turker N, Coskuner Y, Ekiz I, Aksay S, Karababa E (2001) Eur Food Res Technol 212:213–216

    Article  CAS  Google Scholar 

  16. Schliemann W, Strack D (1998) Phytochemistry 49:585–588

    Article  CAS  Google Scholar 

  17. Mégard D (1993) Foods Food Ingred J 158:130–150

    Google Scholar 

  18. Huang AS, von Elbe JH (1985) J Food Sci 50:1115–1120

    CAS  Google Scholar 

  19. Cai YZ, Corke H (1999) J Food Sci 64:869–873

    CAS  Google Scholar 

  20. Wyler H, Meuer U (1979) Helv Chim Acta 62:1330–1339

    CAS  Google Scholar 

  21. Stintzing FC, Schieber A, Carle R (2003) Eur Food Res Technol 216:303–311

    CAS  Google Scholar 

  22. Saguy I, Kopelman IJ, Mizrahi S (1978) J Agric Food Chem 26:360–362

    CAS  Google Scholar 

  23. Huang AS, von Elbe JH (1987) J Food Sci 52:1689–1693

    CAS  Google Scholar 

  24. Schwartz SJ, von Elbe JH (1983) Z Lebensm Unters Forsch 176:448–453

    CAS  PubMed  Google Scholar 

  25. Stintzing FC, Kammerer D, Schieber A, Adama H, Nacoulma OG, Carle R (2004) Z Naturforsch C Biosci 59:1–8

    Google Scholar 

  26. Minale L, Piattelli M, Nicolaus RA (1965) Rend Accad Sci Fis Mater 32:165–172

    CAS  Google Scholar 

  27. Hilpert H, Siegfried M-A, Dreiding AS (1985) Helv Chim Acta 68:1670–1678

    CAS  Google Scholar 

  28. Strack D, Engel U, Wray V (1987) Phytochemistry 26:2399–2400

    Article  CAS  Google Scholar 

  29. Alard D, Wray V, Grotjahn L, Reznik H, Strack D (1985) Phytochemistry 24:2383–2385

    Article  CAS  Google Scholar 

  30. Kujala T, Loponen J, Pihlaja K (2001) Z Naturforsch C Biosci 56:343–348

    CAS  Google Scholar 

  31. Wyler H (1986) Phytochemistry 25:2238

    Article  CAS  Google Scholar 

  32. Kobayashi N, Schmidt J, Wray V, Schliemann W (2001) Phytochemistry 56:429–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank IngredienTrade New York, USA, for providing Red Pitahaya concentrate. E. Müssig is gratefully acknowledged for the careful isolation of betanin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian C. Stintzing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

M. Herbach, K., C. Stintzing, F. & Carle, R. Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose] monitored by high-performance liquid chromatography–tandem mass spectometric analyses. Eur Food Res Technol 219, 377–385 (2004). https://doi.org/10.1007/s00217-004-0948-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-004-0948-8

Keywords

Navigation