Skip to main content
Log in

An integrated ICP-MS-based analytical approach to fractionate and characterize ionic and nanoparticulate Ce species

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cerium dioxide nanoparticles (CeO2 NPs) are widely used in various fields, leading to concern about their effect on human health. When conducting in vivo investigations of CeO2 NPs, the challenge is to fractionate ionic Ce and CeO2 NPs and to characterize CeO2 NPs without changing their properties/state. To meet this challenge, we developed an integrated inductively coupled plasma-mass spectrometry (ICP-MS)-based analytical approach in which ultrafiltration is used to fractionate ionic and nanoparticulate Ce species while CeO2 NPs are characterized by single particle-ICP-MS (sp-ICP-MS). We used this technique to compare the effects of two sample pretreatment methods, alkaline and enzymatic pretreatments, on ionic Ce and CeO2 NPs. Results showed that enzymatic pretreatment was more efficient in extracting ionic Ce or CeO2 NPs from animal tissues. Moreover, results further showed that the properties/states of all ionic and nanoparticulate Ce species were well preserved. The rates of recovery of both species were over 85%; the size distribution of CeO2 NPs was comparable to that of original NPs. We then applied this analytical approach, including the enzymatic pretreatment and ICP-MS-based analytical techniques, to investigate the bioaccumulation and biotransformation of CeO2 NPs in mice. It was found that the thymus acts as a “holding station” in CeO2 NP translocation in vivo. CeO2 NP biotransformation was reported to be organ-specific. This is the first study to evaluate the impact of enzymatic and alkaline pretreatment on Ce species, namely ionic Ce and CeO2 NPs. This integrated ICP-MS-based analytical approach enables us to conduct in vivo biotransformation investigations of CeO2 NPs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Research GV. Cerium oxide nanoparticles market size, share & trends analysis report by application (energy storage, polishing sgent, personal care, pharmaceuticals), by region, and segment forecasts, 2018–2025. https://www.grandviewresearch.com/industry-analysis/cerium-oxide-nanoparticles-market (Date Accessed 2017 Accessed, date last accessed).

  2. Loddo V, Yurdakal S, Parrino F. Economical aspects, toxicity, and environmental fate of cerium oxide. In: Scirè S, Palmisano LS, editors. Cerium oxide (CeO2): synthesis, properties and applications. Elsevier; 2020. p. 359–73. https://doi.org/10.1016/B978-0-12-815661-2.00009-8.

  3. Phalyvong K, Sivry Y, Pauwels H, et al. Occurrence and origins of cerium dioxide and titanium dioxide nanoparticles in the Loire River (France) by single particle ICP-MS and FEG-SEM imaging. Front Environ Sci. 2020;8:141. https://doi.org/10.3389/fenvs.2020.00141.

    Article  Google Scholar 

  4. Jreije I, Azimzada A, Hadioui M, et al. Measurement of CeO2 nanoparticles in natural waters using a high sensitivity, single particle ICP-MS. Molecules. 2020;25(23):5516. https://doi.org/10.3390/molecules25235516.

  5. Phalyvong K, Sivry Y, Pauwels H, et al. Assessing CeO2 and TiO2 nanoparticle concentrations in the Seine River and its tributaries near Paris. Front Environ Sci. 2021;8:271. https://doi.org/10.3389/fenvs.2020.549896.

    Article  Google Scholar 

  6. Yu Y, Li Y, Li B, et al. Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil. Environ Pollut. 2016;216:764–72. https://doi.org/10.1016/j.envpol.2016.06.046.

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Han X, Liang T, et al. Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China. Chemosphere. 2019;217:851–7. https://doi.org/10.1016/j.chemosphere.2018.11.060.

    Article  CAS  PubMed  Google Scholar 

  8. Yessoufou A, Ifon BE, Suanon F, et al. Rare earth and precious elements in the urban sewage sludge and lake surface sediments under anthropogenic influence in the Republic of Benin. Environ Monit Assess. 2017;189(12):625. https://doi.org/10.1007/s10661-017-6331-6.

    Article  CAS  PubMed  Google Scholar 

  9. Gambardella C, Gallus L, Gatti AM, et al. Toxicity and transfer of metal oxide nanoparticles from microalgae to sea urchin larvae. Chem Ecol. 2014;30(4):308–16. https://doi.org/10.1080/02757540.2013.873031.

    Article  CAS  Google Scholar 

  10. Hawthorne J, De la Torre RR, Xing B, et al. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ Sci Technol. 2014;48(22):13102–9. https://doi.org/10.1021/es503792f.

    Article  CAS  PubMed  Google Scholar 

  11. Cai X, Liu X, Jiang J, et al. Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments. Small. 2020;16(36):e1907663. https://doi.org/10.1002/smll.201907663.

    Article  CAS  PubMed  Google Scholar 

  12. Yokel RA, Hussain S, Garantziotis S, et al. The Yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environ Sci Nano. 2014;1(5):406–28. https://doi.org/10.1039/C4EN00039K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evseeva T, Geras’kin S, Majstrenko T, et al. Comparative estimation of 232Th and stable Ce(III) toxicity and detoxification pathways in freshwater alga Chlorella vulgaris. Chemosphere. 2010;81(10):1320–7. https://doi.org/10.1016/j.chemosphere.2010.08.028.

    Article  CAS  PubMed  Google Scholar 

  14. Samal RR, Mishra M, Subudhi U. Differential interaction of cerium chloride with bovine liver catalase: a computational and biophysical study. Chemosphere. 2020;239:124769. https://doi.org/10.1016/j.chemosphere.2019.124769.

    Article  CAS  PubMed  Google Scholar 

  15. Mortazavi Milani Z, Charbgoo F, Darroudi M. Impact of physicochemical properties of cerium oxide nanoparticles on their toxicity effects. Ceram Int. 2017;43(17):14572–81. https://doi.org/10.1016/j.ceramint.2017.08.177.

    Article  CAS  Google Scholar 

  16. Gray EP, Coleman JG, Bednar AJ, et al. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol. 2013;47(24):14315–23. https://doi.org/10.1021/es403558c.

    Article  CAS  PubMed  Google Scholar 

  17. Abdolahpur Monikh F, Chupani L, Zuskova E, et al. Method for extraction and quantification of metal-based nanoparticles in biological media: number-based biodistribution and bioconcentration. Environ Sci Technol. 2019;53(2):946–53. https://doi.org/10.1021/acs.est.8b03715.

    Article  CAS  PubMed  Google Scholar 

  18. Modrzynska J, Berthing T, Ravn-Haren G, et al. In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure. PLoS ONE. 2018;13(8):e0202477. https://doi.org/10.1371/journal.pone.0202477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vidmar J, Buerki-Thurnherr T, Loeschner K. Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS. J Anal At Spectrom. 2018;33(5):752–61. https://doi.org/10.1039/C7JA00402H.

    Article  CAS  Google Scholar 

  20. Hadioui M, Leclerc S, Wilkinson KJ. Multimethod quantification of Ag+ release from nanosilver. Talanta. 2013;105:15–9. https://doi.org/10.1016/j.talanta.2012.11.048.

    Article  CAS  PubMed  Google Scholar 

  21. Meermann B, Nischwitz V. ICP-MS for the analysis at the nanoscale—a tutorial review. J Anal At Spectrom. 2018;33(9):1432–68. https://doi.org/10.1039/C8JA00037A.

    Article  CAS  Google Scholar 

  22. Zhou X-X, Liu J-F, Geng F-L. Determination of metal oxide nanoparticles and their ionic counterparts in environmental waters by size exclusion chromatography coupled to ICP-MS. NanoImpact. 2016;1:13–20. https://doi.org/10.1016/j.impact.2016.02.002.

    Article  Google Scholar 

  23. Loosli F, Wang J, Sikder M, et al. Analysis of engineered nanomaterials (Ag, CeO2 and Fe2O3) in spiked surface waters at environmentally relevant particle concentrations. Sci Total Environ. 2020;715:136927. https://doi.org/10.1016/j.scitotenv.2020.136927.

    Article  CAS  PubMed  Google Scholar 

  24. Clar JG, Platten WE 3rd, Baumann EJ Jr, et al. Dermal transfer and environmental release of CeO2 nanoparticles used as UV inhibitors on outdoor surfaces: implications for human and environmental health. Sci Total Environ. 2018;613–614:714–23. https://doi.org/10.1016/j.scitotenv.2017.09.050.

    Article  CAS  PubMed  Google Scholar 

  25. Xie C, Zhang J, Ma Y, et al. Bacillus subtilis causes dissolution of ceria nanoparticles at the nano–bio interface. Environ Sci Nano. 2019;6(1):216–23. https://doi.org/10.1039/c8en01002a.

    Article  CAS  Google Scholar 

  26. Rohder LA, Brandt T, Sigg L, et al. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat Toxicol. 2014;152:121–30. https://doi.org/10.1016/j.aquatox.2014.03.027.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Dan Y, Shi H, et al. Elucidating the mechanisms for plant uptake and in-planta speciation of cerium in radish (Raphanus sativus L.) treated with cerium oxide nanoparticles. J Environ Chem Eng. 2017;5(1):572–7. https://doi.org/10.1016/j.jece.2016.12.036.

    Article  CAS  Google Scholar 

  28. Huang Y. Lum JT-S, Leung KS-Y; Single particle ICP-MS combined with internal standardization for accurate characterization of polydisperse nanoparticles in complex matrices. J Anal At Spectrom. 2020;35(10):2148–55. https://doi.org/10.1039/d0ja00180e.

    Article  CAS  Google Scholar 

  29. Chen B, Lum JT-S, Huang Y, et al. Integration of sub-organ quantitative imaging LA-ICP-MS and fractionation reveals differences in translocation and transformation of CeO2 and Ce3+ in mice. Anal Chim Acta. 2019;1082:18–29. https://doi.org/10.1016/j.aca.2019.07.044.

    Article  CAS  PubMed  Google Scholar 

  30. Animal Welfare Advisory Group Agriculture, Fisheries and Conservation Department. Code of practice care and use of animals for experimental purposes. Hong Kong; 2004.

  31. Pace HE, Rogers NJ, Jarolimek C, et al. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem. 2011;83(24):9361–9. https://doi.org/10.1021/ac201952t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loeschner K, Brabrand MS, Sloth JJ, et al. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS. Anal Bioanal Chem. 2014;406(16):3845–51. https://doi.org/10.1007/s00216-013-7431-y.

    Article  CAS  PubMed  Google Scholar 

  33. Van der Zande M, Vandebriel RJ, Van Doren E, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8):7427–42. https://doi.org/10.1021/nn302649p.

    Article  CAS  PubMed  Google Scholar 

  34. Loula M, Kana A, Mestek O. Non-spectral interferences in single-particle ICP-MS analysis: an underestimated phenomenon. Talanta. 2019;202:565–71. https://doi.org/10.1016/j.talanta.2019.04.073.

    Article  CAS  PubMed  Google Scholar 

  35. Kartikawati NA, Safdar R, Lal B, et al. Measurement and correlation of the physical properties of aqueous solutions of ammonium based ionic liquids. J Mol Liq. 2018;253:250–8. https://doi.org/10.1016/j.molliq.2018.01.040.

  36. Pavlova OS, Gulyaev MV, Anisimov NV, et al. New aspects of biodistribution of perfluorocarbon rmulsions in rats: thymus imaging. Appl Magn Reson. 2020;51(12):1625–35. https://doi.org/10.1007/s00723-020-01242-w.

    Article  CAS  Google Scholar 

  37. Eggli P, Schaffner T, Gerber HA, et al. Accessibility of thymic cortical lymphocytes to particles translocated from the peritoneal cavity to parathymic lymph nodes. Thymus. 1986;8(3):129–39.

    CAS  PubMed  Google Scholar 

  38. Moore JE Jr, Bertram CD. Lymphatic dystem flows. Annu Rev Fluid Mech. 2018;50:459–82. https://doi.org/10.1146/annurev-fluid-122316-045259.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Graham UM, Yokel RA, Dozier AK, et al. Analytical high-resolution electron microscopy reveals organ-specific nanoceria bioprocessing. Toxicol Pathol. 2018;46(1):47–61. https://doi.org/10.1177/0192623317737254.

    Article  CAS  PubMed  Google Scholar 

  40. Molina RM, Konduru NV, Jimenez RJ, et al. Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide nanoparticles and ionic cerium. Environ Sci Nano. 2014;1(6):561–73. https://doi.org/10.1039/c4en00034j.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Hong Kong Research Grants Council (HKBU 12302020 and 12302821) for their financial support. We appreciate Dr. Patrick Y.-K. Yue for his technical support in animal experiments. Y. Huang is supported by a postgraduate studentship offered by the University Grants Committee. The graphical abstract and Fig. 1 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

Yingyan Huang: conceptualization; methodology; validation; formal analysis; investigation; data curation; writing — original draft; writing — review and editing.

Judy Tsz-Shan Lum: conceptualization; methodology; writing — review and editing.

Kelvin Sze-Yin Leung: conceptualization; writing — review and editing; supervision; project administration; funding acquisition for Y. Huang.

Corresponding author

Correspondence to Kelvin Sze-Yin Leung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Lum, J.TS. & Leung, K.SY. An integrated ICP-MS-based analytical approach to fractionate and characterize ionic and nanoparticulate Ce species. Anal Bioanal Chem 414, 3397–3410 (2022). https://doi.org/10.1007/s00216-022-03958-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03958-z

Keywords

Navigation