Skip to main content

Advertisement

Log in

Recent advances in mass spectrometry analytical techniques for per- and polyfluoroalkyl substances (PFAS)

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The ubiquitous presence of per- and polyfluoroalkyl substances (PFAS) in various environments has led to increasing concern, and these chemicals have been confirmed as global contaminants. Following the chemical regulatory restrictions imposed, PFAS alternatives that are presumed to be less toxic have been manufactured to replace the traditional ones in the market. However, owing to the original release and alternative usage, continuous accumulation of PFAS has been reported in environmental and human samples, with uncertain consequences for ecosystem and human health. It is crucial to promote and improve existing analytical techniques to facilitate the detection of trace amounts of PFAS in diverse environmental matrices. This review summarizes analytical methods that have been applied to and advanced for targeted detection and suspect screening of PFAS, which mainly include (i) sampling and sample preparation methods for various environment matrices and organisms, and quality assurance/quality control during the analysis process, and (ii) quantitative methods for targeted analysis and automated suspect screening strategies for non-targeted PFAS analysis, together with their applications, advantages, shortcomings, and need for new method development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Abbreviations

AIF:

All-ion fragmentation

APCI:

Atmospheric pressure chemical ionization

APPI:

Atmospheric pressure photoionization

CI:

Chemical ionization

DBDI-MS:

Dielectric barrier discharge ionization mass spectrometry

DDA:

Data-dependent acquisition

DIA:

Data-independent acquisition

diPAP:

Fluorotelomer phosphate diester

DLLME:

Dispersive liquid–liquid microextraction

DSPE:

Dispersive solid-phase extraction

EI:

Electron ionization

ESI:

Electrospray ionization

FASE:

Perfluoroalkane sulfonamido ethanol

FOSAs:

Perfluoroalkane sulfonamides

FOSEs:

Perfluoroalkane sulfonamidethanols

FTAs:

Fluorotelomer acrylates

FTICR-MS:

Fourier transform ion cyclotron resonance

FTOHs:

Fluorotelomer alcohols

FTOs:

Fluorotelomer olefins

FTSA:

Fluorotelomer sulfonic acid

GC:

Gas chromatography

GFF:

Glass fiber filters

HDPE:

High-density polyethylene

HPLC:

High-performance liquid chromatography

HRMS:

High-resolution mass spectrometry

HS-SPME:

Headspace solid-phase microextraction

IPDC:

Optimized isotopic profile deconvoluted chromatogram

IPE:

Ion-pair extraction

IS:

Internal standards

LC:

Liquid chromatography

LC-MS:

High-performance liquid chromatography tandem mass spectrometry

LLE:

Liquid–liquid extraction

LOD:

Instrument detection limit

MALDI-IMS:

Matrix-assisted laser desorption/ionization imaging mass spectrometry

MDL:

Method detection limit

MMF-SPME:

Multiple monolithic fiber solid-phase microextraction

MOF:

Metal-organic framework

MRM:

Multiple reaction monitoring

MS/MS:

Tandem mass spectrometry

MTBE:

Methyl tert-butyl ether

NCI:

Negative ion chemical ionization

OECD:

Organisation for Economic Co-operation and Development

PAS:

Passive air sampler

PCI:

Positive chemical ionization

PFAA:

Perfluoroalkyl acid

PFAS:

Per- and polyfluoroalkyl substances

PFC:

Perfluorinated compound

PFCA:

Perfluoroalkyl carboxylic acid

PFI:

Polyfluorinated iodide

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctanesulfonic acid

PFSA:

Perfluoroalkyl sulphonic acid

PLE:

Pressurized liquid extraction

PoFTOHs:

Polyfluorinated telomer alcohols

POPs:

Persistent organic pollutants

PP:

Polypropylene

PTFE:

Polytetrafluoroethylene

PUF:

Polyurethane foam

QA/QC:

Quality assurance/quality control

QFF:

Quartz fiber filters

QTOF:

Quadrupole time-of-flight

RP:

Resolving power

SIM:

Selected ion monitoring mode

SIP:

Sorbent-impregnated PUF

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

TOF-MS:

Time-of-flight mass spectrometry

US EPA:

United States Environmental Protection Agency

UNEP:

United Nations Environment Programme

UPLC:

Ultra-performance liquid chromatography

VALLME:

Vortex-assisted liquid–liquid microextraction

WAX:

Weak anion exchange

References

  1. (OECD) TOfEC-oaD. Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances: Recommendations and Practical Guidance. Paris: OECD Publishing; 2021.

    Google Scholar 

  2. Wang Z, Buser AM, Cousins IT, Demattio S, Drost W, Johansson O, Ohno K, Patlewicz G, Richard AM, Walker GW. A New OECD Definition for Per-and Polyfluoroalkyl Substances. Environ Sci Technol. 2021.

  3. Giesy JP, Kannan K. Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environ Sci Technol. 2001;35(7):1339–42. https://doi.org/10.1021/es001834k.

    Article  CAS  PubMed  Google Scholar 

  4. Boiteux V, Dauchy X, Rosin C, Munoz JF. National screening study on 10 perfluorinated compounds in raw and treated tap water in France. Arch Environ Contam Toxicol. 2012;63(1):1–12. https://doi.org/10.1007/s00244-012-9754-7.

    Article  CAS  PubMed  Google Scholar 

  5. Ullah S, Alsberg T, Berger U. Simultaneous determination of perfluoroalkyl phosphonates, carboxylates, and sulfonates in drinking water. J Chromatogr A. 2011;1218(37):6388–95. https://doi.org/10.1016/j.chroma.2011.07.005.

    Article  CAS  PubMed  Google Scholar 

  6. Stockholm-Convention. he Nine New POPs: an Introduction to the Nine Chemicals Added to the Stockholm Convention by the Conference of the Parties at its Fourth Meeting. Geneva: Stockholm Convention; 2009.

    Google Scholar 

  7. Zheng G, Schreder E, Dempsey JC, Uding N, Chu V, Andres G, Sathyanarayana S, Salamova A. Per-and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. Environ Sci Technol. 2021.

  8. Yong ZY, Kim KY, Oh J-E. The occurrence and distributions of per-and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. Environ Pollut. 2021;268:115395.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature. Water Res. 2017;124:482–95. https://doi.org/10.1016/j.watres.2017.07.024.

    Article  CAS  PubMed  Google Scholar 

  10. Baduel C, Mueller JF, Rotander A, Corfield J, Gomez-Ramos MJ. Discovery of novel per- and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. Chemosphere. 2017;185:1030–8. https://doi.org/10.1016/j.chemosphere.2017.06.096.

    Article  CAS  PubMed  Google Scholar 

  11. Yu N, Guo H, Yang J, Jin L, Wang X, Shi W, Zhang X, Yu H, Wei S. Non-Target and Suspect Screening of Per- and Polyfluoroalkyl Substances in Airborne Particulate Matter in China. Environ Sci Technol. 2018;52(15):8205–14. https://doi.org/10.1021/acs.est.8b02492.

    Article  CAS  PubMed  Google Scholar 

  12. EPA US (2020) PFAS Master List of PFAS Substances (Version 2). https://comptox.epa.gov/dashboard/chemical_lists/pfasmaster. Accessed 4 May 2021 .

  13. Patlewicz G, Richard AM, Williams AJ, Grulke CM, Sams R, Lambert J, Noyes PD, DeVito MJ, Hines RN, Strynar M. A chemical category-based prioritization approach for selecting 75 per-and polyfluoroalkyl substances (PFAS) for tiered toxicity and toxicokinetic testing. Environ Health Perspect. 2019;127(01):014501.

    Article  PubMed Central  Google Scholar 

  14. Li P, Oyang X, Zhao Y, Tu T, Tian X, Li L, Zhao Y, Li J, Xiao Z. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China. Chemosphere. 2019;225:659–67. https://doi.org/10.1016/j.chemosphere.2019.03.045.

    Article  CAS  PubMed  Google Scholar 

  15. Winkens K, Koponen J, Schuster J, Shoeib M, Vestergren R, Berger U, Karvonen AM, Pekkanen J, Kiviranta H, Cousins IT. Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms. Environ Pollut. 2017;222:423–32.

    Article  CAS  PubMed  Google Scholar 

  16. Rauert C, Shoieb M, Schuster JK, Eng A, Harner T. Atmospheric concentrations and trends of poly-and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ Pollut. 2018;238:94–102.

    Article  CAS  PubMed  Google Scholar 

  17. Xie Z, Wang Z, Mi W, Möller A, Wolschke H, Ebinghaus R. Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic. Scientific Reports. 2015;5(1):1–6.

    Google Scholar 

  18. Barber JL, Berger U, Chaemfa C, Huber S, Jahnke A, Temme C, Jones KC. Analysis of per-and polyfluorinated alkyl substances in air samples from Northwest EuropePresented at Sources, Fate, Behaviour and Effects of Organic Chemicals at the Regional and Global Scale, 24th26th October 2006, Lancaster, UK. Electronic supplementary information (ESI) available: Improvements in the method over the study period, a Figure showing chromatograms of PFOS and PFOA in a Kjeller air sample and the matching field blank and 6 Tables containing further information about sampling, analysis and air concentrations. 2007. See.

  19. Jahnke A, Huber S, Temme C, Kylin H, Berger U. Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air. J Chromatography A. 2007;1164(1-2):1–9.

    Article  CAS  Google Scholar 

  20. Padilla-Sánchez JA, Papadopoulou E, Poothong S, Haug LS. Investigation of the best approach for assessing human exposure to poly-and perfluoroalkyl substances through indoor air. Environ Sci Technol. 2017;51(21):12836–43. https://doi.org/10.1021/acs.est.7b03516.

    Article  CAS  PubMed  Google Scholar 

  21. Yao Y, Zhao Y, Sun H, Chang S, Zhu L, Alder AC, Kannan K. Per-and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: implications for human exposure. Environ Sci Technol. 2018;52(5):3156–66. https://doi.org/10.1021/acs.est.7b04971.

    Article  CAS  PubMed  Google Scholar 

  22. Morales-McDevitt ME, Becanova J, Blum A, Bruton TA, Vojta S, Woodward M, Lohmann R. The air that we breathe: Neutral and volatile PFAS in indoor air. Environ Sci Technol Lett. 2021;8(10):897–902.

    Article  CAS  Google Scholar 

  23. Meyer T, De Silva AO, Spencer C, Wania F. Fate of perfluorinated carboxylates and sulfonates during snowmelt within an urban watershed. Environ Sci Technol. 2011;45(19):8113–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA. Detection of poly-and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3(10):344–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ciofi L, Renai L, Rossini D, Ancillotti C, Falai A, Fibbi D, Bruzzoniti MC, Santana-Rodriguez JJ, Orlandini S, Del Bubba M. Applicability of the direct injection liquid chromatographic tandem mass spectrometric analytical approach to the sub-ng L− 1 determination of perfluoro-alkyl acids in waste, surface, ground and drinking water samples. Talanta. 2018;176:412–21.

    Article  CAS  PubMed  Google Scholar 

  26. Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T. Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environ Sci Technol. 2004;38(21):5522–8.

    Article  CAS  PubMed  Google Scholar 

  27. Winkens K, Giovanoulis G, Koponen J, Vestergren R, Berger U, Karvonen AM, Pekkanen J, Kiviranta H, Cousins IT. Perfluoroalkyl acids and their precursors in floor dust of children's bedrooms–Implications for indoor exposure. Environ Int. 2018;119:493–502.

    Article  CAS  PubMed  Google Scholar 

  28. Tang L, Liu X, Yang G, Xia J, Zhang N, Wang D, Deng H, Mao M, Li X, Ni B-J. Spatial distribution, sources and risk assessment of perfluoroalkyl substances in surface soils of a representative densely urbanized and industrialized city of China. CATENA. 2021;198:105059.

    Article  CAS  Google Scholar 

  29. Ahmadireskety A, Da Silva BF, Townsend TG, Yost RA, Solo-Gabriele HM, Bowden JA. Evaluation of extraction workflows for quantitative analysis of per-and polyfluoroalkyl substances: A case study using soil adjacent to a landfill. Sci Total Environ. 2021;760:143944.

    Article  CAS  PubMed  Google Scholar 

  30. Codling G, Hosseini S, Corcoran MB, Bonina S, Lin T, Li A, Sturchio NC, Rockne KJ, Ji K, Peng H. Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes–Superior, Huron, and Michigan. Environ Pollut. 2018;236:373–81.

    Article  CAS  PubMed  Google Scholar 

  31. Pignotti E, Dinelli E. Distribution and partition of endocrine disrupting compounds in water and sediment: Case study of the Romagna area (North Italy). J Geochem Explor. 2018;195:66–77.

    Article  CAS  Google Scholar 

  32. Mussabek D, Ahrens L, Persson KM, Berndtsson R. Temporal trends and sediment–water partitioning of per-and polyfluoroalkyl substances (PFAS) in lake sediment. Chemosphere. 2019;227:624–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ Sci Pollut Res. 2015;22(19):14546–59.

    Article  CAS  Google Scholar 

  34. Padilla-Sánchez JA, Haug LS. A fast and sensitive method for the simultaneous analysis of a wide range of per-and polyfluoroalkyl substances in indoor dust using on-line solid phase extraction-ultrahigh performance liquid chromatography-time-of-flight-mass spectrometry. J Chromatography A. 2016;1445:36–45.

    Article  Google Scholar 

  35. Gebbink WA, Letcher RJ. Comparative tissue and body compartment accumulation and maternal transfer to eggs of perfluoroalkyl sulfonates and carboxylates in Great Lakes herring gulls. Environ Pollut. 2012;162:40–7.

    Article  CAS  PubMed  Google Scholar 

  36. Toms LML, Thompson J, Rotander A, Hobson P, Calafat AM, Kato K, Ye X, Broomhall S, Harden F, Mueller JF. Decline in perfluorooctane sulfonate and perfluorooctanoate serum concentrations in an Australian population from 2002 to 2011. Environ Int. 2014;71:74–80. https://doi.org/10.1016/j.envint.2014.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sebastiano M, Jouanneau W, Blévin P, Angelier F, Parenteau C, Gernigon J, Lemesle J, Robin F, Pardon P, Budzinski H. High levels of fluoroalkyl substances and potential disruption of thyroid hormones in three gull species from South Western France. Sci Total Environ. 2021;765:144611.

    Article  CAS  PubMed  Google Scholar 

  38. Chen H, Han J, Cheng J, Sun R, Wang X, Han G, Yang W, He X. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China. Environ Pollut. 2018;241:504–10.

    Article  CAS  PubMed  Google Scholar 

  39. Berger U, Glynn A, Holmström KE, Berglund M, Ankarberg EH, Törnkvist A. Fish consumption as a source of human exposure to perfluorinated alkyl substances in Sweden–Analysis of edible fish from Lake Vättern and the Baltic Sea. Chemosphere. 2009;76(6):799–804.

    Article  CAS  PubMed  Google Scholar 

  40. Wong F, Shoeib M, Katsoyiannis A, Eckhardt S, Stohl A, Bohlin-Nizzetto P, Li H, Fellin P, Su Y, Hung H. Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP). Atmospheric Environ. 2018;172:65–73. https://doi.org/10.1016/j.atmosenv.2017.10.028.

    Article  CAS  Google Scholar 

  41. Mulabagal V, Liu L, Qi J, Wilson C, Hayworth JS. A rapid UHPLC-MS/MS method for simultaneous quantitation of 23 perfluoroalkyl substances (PFAS) in estuarine water. Talanta. 2018;190:95–102.

    Article  CAS  PubMed  Google Scholar 

  42. Programme UNE (2014) Procedure for the Analysis of Persistent Organic Pollutants in Environmental and Human Matrices to Implement the Global Monitoring Plan under the Stockholm Convention.

  43. Tian Y, Yao Y, Chang S, Zhao Z, Zhao Y, Yuan X, Wu F, Sun H. Occurrence and Phase Distribution of Neutral and Ionizable Per- and Polyfluoroalkyl Substances (PFASs) in the Atmosphere and Plant Leaves around Landfills: A Case Study in Tianjin, China. Environ Sci Technol. 2018;52(3):1301–10. https://doi.org/10.1021/acs.est.7b05385.

    Article  CAS  PubMed  Google Scholar 

  44. Kim S-K, Shoeib M, Kim K-S, Park J-E. Indoor and outdoor poly- and perfluoroalkyl substances (PFASs) in Korea determined by passive air sampler. Environ Pollut. 2012;162:144–50. https://doi.org/10.1016/j.envpol.2011.10.037.

    Article  CAS  PubMed  Google Scholar 

  45. Dreyer A, Temme C, Sturm R, Ebinghaus R. Optimized method avoiding solvent-induced response enhancement in the analysis of volatile and semi-volatile polyfluorinated alkylated compounds using gas chromatography–mass spectrometry. J Chromatography A. 2008;1178(1):199–205. https://doi.org/10.1016/j.chroma.2007.11.050.

    Article  CAS  Google Scholar 

  46. Schröder HF. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. J Chromatogr A. 2003;1020(1):131–51. https://doi.org/10.1016/s0021-9673(03)00936-1.

    Article  PubMed  Google Scholar 

  47. Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, Hernández-Méndez J. Pressurized liquid extraction in the analysis of food and biological samples. J Chromatography A. 2005;1089(1):1–17. https://doi.org/10.1016/j.chroma.2005.06.072.

    Article  CAS  Google Scholar 

  48. Ramos L, Kristenson EM, Brinkman UAT. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J Chromatography A. 2002;975(1):3–29. https://doi.org/10.1016/S0021-9673(02)01336-5.

    Article  CAS  Google Scholar 

  49. Alzaga R, Salgado-Petinal C, Jover E, Bayona JM. Development of a procedure for the determination of perfluorocarboxylic acids in sediments by pressurised fluid extraction, headspace solid-phase microextraction followed by gas chromatographic–mass spectrometric determination. J Chromatography A. 2005;1083(1):1–6. https://doi.org/10.1016/j.chroma.2005.06.036.

    Article  CAS  Google Scholar 

  50. Kallenborn R (2004) Perfluorinated alkylated substances (PFAS) in the Nordic environment. Nordic Council of Ministers,

  51. Simcik MF, Dorweiler KJ. Ratio of perfluorochemical concentrations as a tracer of atmospheric deposition to surface waters. Environ Sci Technol. 2005;39(22):8678–83.

    Article  CAS  PubMed  Google Scholar 

  52. Saito N, Harada K, Inoue K, Sasaki K, Yoshinaga T, Koizumi A. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. J Occup Health. 2004;46(1):49–59. https://doi.org/10.1539/joh.46.49.

    Article  CAS  PubMed  Google Scholar 

  53. González-Barreiro C, Martínez-Carballo E, Sitka A, Scharf S, Gans O. Method optimization for determination of selected perfluorinated alkylated substances in water samples. Analytical Bioanalytical Chem. 2006;386(7):2123–32.

    Article  Google Scholar 

  54. Wang J, Shi Y, Cai Y. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry. J Chromatogr A. 2018;1544:1–7. https://doi.org/10.1016/j.chroma.2018.02.047.

    Article  CAS  PubMed  Google Scholar 

  55. Berger U, Haukås M. Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota. J Chromatography A. 2005;1081(2):210–7. https://doi.org/10.1016/j.chroma.2005.05.064.

    Article  CAS  Google Scholar 

  56. Zhang T, Sun H, Gerecke AC, Kannan K, Müller CE, Alder AC. Comparison of two extraction methods for the analysis of per- and polyfluorinated chemicals in digested sewage sludge. J Chromatography A. 2010;1217(31):5026–34. https://doi.org/10.1016/j.chroma.2010.05.061.

    Article  CAS  Google Scholar 

  57. Berger U, Haukås M. Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota. J Chromatogr A. 2005;1081(2):210–7. https://doi.org/10.1016/j.chroma.2005.05.064.

    Article  CAS  PubMed  Google Scholar 

  58. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Wouwe NV, Yang JH, Aldous KM. Perfluorooctanesulfonate and Related Fluorochemicals in Human Blood from Several Countries. Environ Sci Technol. 2004;38(17):4489–95. https://doi.org/10.1021/es0493446.

    Article  CAS  PubMed  Google Scholar 

  59. Gremmel C, Frömel T, Knepper TP. Systematic determination of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in outdoor jackets. Chemosphere. 2016;160:173–80. https://doi.org/10.1016/j.chemosphere.2016.06.043.

    Article  CAS  PubMed  Google Scholar 

  60. Eriksson U, Kärrman A. World-Wide Indoor Exposure to Polyfluoroalkyl Phosphate Esters (PAPs) and other PFASs in Household Dust. Environ Sci Technol. 2015;49(24):14503–11. https://doi.org/10.1021/acs.est.5b00679.

    Article  CAS  PubMed  Google Scholar 

  61. Concha-Graña E, Fernández-Martínez G, López-Mahía P, Prada-Rodríguez D, Muniategui-Lorenzo S. Fast and sensitive determination of per- and polyfluoroalkyl substances in seawater. J Chromatography A. 2018;1555:62–73. https://doi.org/10.1016/j.chroma.2018.04.049.

    Article  CAS  Google Scholar 

  62. Papadopoulou A, Román IP, Canals A, Tyrovola K, Psillakis E. Fast screening of perfluorooctane sulfonate in water using vortex-assisted liquid–liquid microextraction coupled to liquid chromatography–mass spectrometry. Analytica Chimica Acta. 2011;691(1):56–61. https://doi.org/10.1016/j.aca.2011.02.043.

    Article  CAS  PubMed  Google Scholar 

  63. Lorenzo M, Campo J, Picó Y. Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. TrAC Trends Analytical Chem. 2018;103:137–55. https://doi.org/10.1016/j.trac.2018.04.003.

    Article  CAS  Google Scholar 

  64. Tröger R, Klöckner P, Ahrens L, Wiberg K. Micropollutants in drinking water from source to tap - Method development and application of a multiresidue screening method. Sci Total Environ. 2018;627:1404–32. https://doi.org/10.1016/j.scitotenv.2018.01.277.

    Article  CAS  PubMed  Google Scholar 

  65. Jahnke A, Berger U. Trace analysis of per- and polyfluorinated alkyl substances in various matrices—How do current methods perform? J Chromatography A. 2009;1216(3):410–21. https://doi.org/10.1016/j.chroma.2008.08.098.

    Article  CAS  Google Scholar 

  66. Deng ZH, Cheng CG, Wang XL, Shi SH, Wang ML, Zhao RS. Preconcentration and Determination of Perfluoroalkyl Substances (PFASs) in Water Samples by Bamboo Charcoal-Based Solid-Phase Extraction Prior to Liquid Chromatography-Tandem Mass Spectrometry. Molecules. 2018;23(4). https://doi.org/10.3390/molecules23040902.

  67. Chen C, Wang J, Yang S, Yan Z, Cai Q, Yao S. Analysis of perfluorooctane sulfonate and perfluorooctanoic acid with a mixed-mode coating-based solid-phase microextraction fiber. Talanta. 2013;114:11–6.

    Article  CAS  PubMed  Google Scholar 

  68. Saito K, Uemura E, Ishizaki A, Kataoka H. Determination of perfluorooctanoic acid and perfluorooctane sulfonate by automated in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry. Analytica Chimica Acta. 2010;658(2):141–6. https://doi.org/10.1016/j.aca.2009.11.004.

    Article  CAS  PubMed  Google Scholar 

  69. Bach C, Boiteux V, Hemard J, Colin A, Rosin C, Munoz J-F, Dauchy X. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry. J Chromatography A. 2016;1448:98–106. https://doi.org/10.1016/j.chroma.2016.04.025.

    Article  CAS  Google Scholar 

  70. Ruan T, Wang Y, Wang T, Zhang Q, Ding L, Liu J, Wang C, Qu G, Jiang G. Presence and Partitioning Behavior of Polyfluorinated Iodine Alkanes in Environmental Matrices around a Fluorochemical Manufacturing Plant: Another Possible Source for Perfluorinated Carboxylic Acids? Environ Sci Technol. 2010;44(15):5755–61. https://doi.org/10.1021/es101507s.

    Article  CAS  PubMed  Google Scholar 

  71. Huang Y, Li H, Bai M, Huang X. Efficient extraction of perfluorocarboxylic acids in complex samples with a monolithic adsorbent combining fluorophilic and anion-exchange interactions. Analytica Chimica Acta. 2018;1011:50–8. https://doi.org/10.1016/j.aca.2018.01.032.

    Article  CAS  PubMed  Google Scholar 

  72. Surma M, Wiczkowski W, Cieślik E, Zieliński H. Method development for the determination of PFOA and PFOS in honey based on the dispersive Solid Phase Extraction (d-SPE) with micro-UHPLC–MS/MS system. Microchem J. 2015;121:150–6. https://doi.org/10.1016/j.microc.2015.02.008.

    Article  CAS  Google Scholar 

  73. Martín J, Rodríguez-Gómez R, Zafra-Gómez A, Alonso E, Vílchez JL, Navalón A. Validated method for the determination of perfluorinated compounds in placental tissue samples based on a simple extraction procedure followed by ultra-high performance liquid chromatography-tandem mass spectrometry analysis. Talanta. 2016;150:169–76. https://doi.org/10.1016/j.talanta.2015.12.020.

    Article  CAS  PubMed  Google Scholar 

  74. Cao Y, Lee C, Davis ET, Si W, Wang F, Trimpin S, Luo L. 1000-fold preconcentration of per-and polyfluorinated alkyl substances within 10 minutes via electrochemical aerosol formation. Analytical chemistry. 2019;91(22):14352–8.

    Article  CAS  PubMed  Google Scholar 

  75. Suwannakot P, Lisi F, Ahmed E, Liang K, Babarao R, Gooding JJ, Donald WA. Metal–organic framework-enhanced solid-phase microextraction mass spectrometry for the direct and rapid detection of perfluorooctanoic acid in environmental water samples. Analytical Chem. 2020;92(10):6900–8.

    Article  CAS  Google Scholar 

  76. Yang L, Jin F, Zhang P, Zhang Y, Wang J, Shao H, Jin M, Wang S, Zheng L, Wang J. Simultaneous determination of perfluorinated compounds in edible oil by gel-permeation chromatography combined with dispersive solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Agric Food Chem. 2015;63(38):8364–71.

    Article  CAS  PubMed  Google Scholar 

  77. Taniyasu S, Kannan K, So MK, Gulkowska A, Sinclair E, Okazawa T, Yamashita N. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. J Chromatography A. 2005;1093(1):89–97. https://doi.org/10.1016/j.chroma.2005.07.053.

    Article  CAS  Google Scholar 

  78. Groffen T, Bervoets L, Jeong Y, Willems T, Eens M, Prinsen E. A rapid method for the detection and quantification of legacy and emerging per-and polyfluoroalkyl substances (PFAS) in bird feathers using UPLC-MS/MS. J Chromatography B. 2021;1172:122653.

    Article  CAS  Google Scholar 

  79. Al Amin M, Sobhani Z, Liu Y, Dharmaraja R, Chadalavada S, Naidu R, Chalker JM, Fang C. Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)—A review. Environ Technol Innov. 2020;19:100879. https://doi.org/10.1016/j.eti.2020.100879.

    Article  Google Scholar 

  80. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7(4):513–41. https://doi.org/10.1002/ieam.258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson PL, Higgins CP, Field JA. Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ Sci Technol. 2017;51(4):2047–57. https://doi.org/10.1021/acs.est.6b05843.

    Article  CAS  PubMed  Google Scholar 

  82. Wu Y, Miller GZ, Gearhart J, Peaslee G, Venier M. Side-chain fluorotelomer-based polymers in children car seats. Environ Pollut. 2021;268:115477.

    Article  CAS  PubMed  Google Scholar 

  83. Heydebreck F, Tang J, Xie Z, Ebinghaus R. Emissions of Per- and Polyfluoroalkyl Substances in a Textile Manufacturing Plant in China and Their Relevance for Workers' Exposure. Environ Sci Technol. 2016;50(19):10386–96. https://doi.org/10.1021/acs.est.6b03213.

    Article  CAS  PubMed  Google Scholar 

  84. Trier X, Granby K, Christensen JH. Polyfluorinated surfactants (PFS) in paper and board coatings for food packaging. Environ Sci Pollut Res. 2011;18(7):1108–20.

    Article  CAS  Google Scholar 

  85. Ouyang X, Weiss JM, de Boer J, Lamoree MH, Leonards PEG. Non-target analysis of household dust and laundry dryer lint using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. Chemosphere. 2017;166:431–7. https://doi.org/10.1016/j.chemosphere.2016.09.107.

    Article  CAS  PubMed  Google Scholar 

  86. Shoeib M, Harner T, Lee SC, Lane D, Zhu J. Sorbent-Impregnated Polyurethane Foam Disk for Passive Air Sampling of Volatile Fluorinated Chemicals. Analytical Chem. 2008;80(3):675–82. https://doi.org/10.1021/ac701830s.

    Article  CAS  Google Scholar 

  87. Li J, Del Vento S, Schuster J, Zhang G, Chakraborty P, Kobara Y, Jones KC. Perfluorinated compounds in the Asian atmosphere. Environ Sci Technol. 2011;45(17):7241–8.

    Article  CAS  PubMed  Google Scholar 

  88. Ayala-Cabrera JF, Santos FJ, Moyano E. Negative-ion atmospheric pressure ionisation of semi-volatile fluorinated compounds for ultra-high-performance liquid chromatography tandem mass spectrometry analysis. Analytical Bioanalytical Chem. 2018;410(20):4913–24.

    Article  CAS  Google Scholar 

  89. Boiteux V, Bach C, Sagres V, Hemard J, Colin A, Rosin C, Munoz J-F, Dauchy X. Analysis of 29 per- and polyfluorinated compounds in water, sediment, soil and sludge by liquid chromatography–tandem mass spectrometry. Int J Environ Analytical Chem. 2016;96(8):705–28. https://doi.org/10.1080/03067319.2016.1196683.

    Article  CAS  Google Scholar 

  90. Boiteux V, Dauchy X, Bach C, Colin A, Hemard J, Sagres V, Rosin C, Munoz J-F. Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from a major production source. Sci Total Environ. 2017;583:393–400. https://doi.org/10.1016/j.scitotenv.2017.01.079.

    Article  CAS  PubMed  Google Scholar 

  91. Li F, Huang H, Xu Z, Ni H, Yan H, Chen R, Luo Y, Pan W, Long J, Ye X. Investigation of perfluoroalkyl substances (PFASs) in sediments from the urban lakes of anqing city, anhui Province, China. Bull Environ contam Toxicol. 2017;99(6):760–4.

    Article  CAS  PubMed  Google Scholar 

  92. Yang C, Lee HK, Zhang Y, Jiang L-L, Chen Z-F, Chung ACK, Cai Z. In situ detection and imaging of PFOS in mouse kidney by matrix-assisted laser desorption/ionization imaging mass spectrometry. Analytical Chem. 2019;91(14):8783–8.

    Article  CAS  Google Scholar 

  93. Ahmed E, Xiao D, Dumlao MC, Steel CC, Schmidtke LM, Fletcher J, Donald WA. Nanosecond pulsed dielectric barrier discharge ionization mass spectrometry. Analytical Chem. 2020;92(6):4468–74.

    Article  CAS  Google Scholar 

  94. Ruan T, Jiang G. Analytical methodology for identification of novel per- and polyfluoroalkyl substances in the environment. TrAC Trends Analytical Chem. 2017;95:122–31. https://doi.org/10.1016/j.trac.2017.07.024.

    Article  CAS  Google Scholar 

  95. Place BJ, Field JA. Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ Sci Technol. 2012;46(13):7120–7. https://doi.org/10.1021/es301465n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. D'Agostino LA, Mabury SA. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ Sci Technol. 2014;48(1):121–9. https://doi.org/10.1021/es403729e.

    Article  CAS  PubMed  Google Scholar 

  97. Trier X, Granby K, Christensen JH. Polyfluorinated surfactants (PFS) in paper and board coatings for food packaging. Environ Sci Pollut Res Int. 2011;18(7):1108–20. https://doi.org/10.1007/s11356-010-0439-3.

    Article  CAS  PubMed  Google Scholar 

  98. Liu Y, Pereira ADS, Martin JW. Discovery of C5–C17 Poly- and Perfluoroalkyl Substances in Water by In-Line SPE-HPLC-Orbitrap with In-Source Fragmentation Flagging. Analytical Chemistry. 2015;87(8):4260–8. https://doi.org/10.1021/acs.analchem.5b00039.

    Article  CAS  PubMed  Google Scholar 

  99. Xiao F, Golovko SA, Golovko MY. Identification of novel non-ionic, cationic, zwitterionic, and anionic polyfluoroalkyl substances using UPLC–TOF–MSE high-resolution parent ion search. Analytica Chimica Acta. 2017;988:41–9. https://doi.org/10.1016/j.aca.2017.08.016.

    Article  CAS  PubMed  Google Scholar 

  100. Krauss M, Singer H, Hollender J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397(3):943–51. https://doi.org/10.1007/s00216-010-3608-9.

    Article  CAS  PubMed  Google Scholar 

  101. Klitzke CF, Corilo YE, Siek K, Binkley J, Patrick J, Eberlin MN. Petroleomics by Ultrahigh-Resolution Time-of-Flight Mass Spectrometry. Energy & Fuels. 2012;26(9):5787–94. https://doi.org/10.1021/ef300961c.

    Article  CAS  Google Scholar 

  102. Dodds JN, Hopkins ZR, Knappe DRU, Baker ES. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry–Mass Spectrometry (IMS-MS). Analytical Chem. 2020;92(6):4427–35. https://doi.org/10.1021/acs.analchem.9b05364.

    Article  CAS  Google Scholar 

  103. Rotander A, Kärrman A, Toms LM, Kay M, Mueller JF, Gómez Ramos MJ. Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach. Environ Sci Technol. 2015;49(4):2434–42. https://doi.org/10.1021/es503653n.

    Article  CAS  PubMed  Google Scholar 

  104. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chem. 2006;78(3):779–87.

    Article  CAS  Google Scholar 

  105. Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11(1):1–11.

    Article  Google Scholar 

  106. Liu Y, D'Agostino LA, Qu G, Jiang G, Martin JW. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC Trends Analytical Chem. 2019;121:115420. https://doi.org/10.1016/j.trac.2019.02.021.

    Article  CAS  Google Scholar 

  107. Newton S, McMahen R, Stoeckel JA, Chislock M, Lindstrom A, Strynar M. Novel Polyfluorinated Compounds Identified Using High Resolution Mass Spectrometry Downstream of Manufacturing Facilities near Decatur, Alabama. Environ Sci Technol. 2017;51(3):1544–52. https://doi.org/10.1021/acs.est.6b05330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Myers AL, Jobst KJ, Mabury SA, Reiner EJ. Using mass defect plots as a discovery tool to identify novel fluoropolymer thermal decomposition products. J Mass Spectrometry. 2014;49(4):291–6.

    Article  CAS  Google Scholar 

  109. Jacob P, Barzen-Hanson KA, Helbling DE. Target and Nontarget Analysis of Per-and Polyfluoralkyl Substances in Wastewater from Electronics Fabrication Facilities. Environ Sci Technol. 2021;55(4):2346–56.

    Article  CAS  PubMed  Google Scholar 

  110. Loos M (2016) enviMass beta version 3.1. Zenodo

  111. Group OUGP (2013) Synthesis Paper on Per- and Polyfluorinated Chemicals (PFCs). OECD Environment, Health and Safety Publications: UNEP

  112. Getzinger GJ, Higgins CP, Ferguson PL. Structure Database and In Silico Spectral Library for Comprehensive Suspect Screening of Per-and Polyfluoroalkyl Substances (PFASs) in Environmental Media by High-resolution Mass Spectrometry. Analytical Chem. 2021;93(5):2820–7.

    Article  CAS  Google Scholar 

  113. Koelmel JP, Paige MK, Aristizabal-Henao JJ, Robey NM, Nason SL, Stelben PJ, Li Y, Kroeger NM, Napolitano MP, Savvaides T, Vasiliou V, Rostkowski P, Garrett TJ, Lin E, Deigl C, Jobst K, Townsend TG, Godri Pollitt KJ, Bowden JA. Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition. Analytical Chem. 2020;92(16):11186–94. https://doi.org/10.1021/acs.analchem.0c01591.

    Article  CAS  Google Scholar 

  114. Baygi SF, Fernando S, Hopke PK, Holsen TM, Crimmins BS. Nontargeted Discovery of Novel Contaminants in the Great Lakes Region: A Comparison of Fish Fillets and Fish Consumers. Environ Sci Technol. 2021;55(6):3765–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors’ contributions

Shenglan Jia: Data curation, Writing—Original draft preparation. Mauricius Marques Dos Santos: Methodology, Writing- Reviewing and Editing. Caixia Li: Data curation, Writing—Reviewing and Editing. Shane A. Snyder: Supervision, Writing—Reviewing and Editing.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane A. Snyder.

Ethics declarations

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Published in the topical collection Per- and Polyfluoroalkyl Substances (PFAS) – Contaminants of Emerging Concern with guest editors Erin Baker and Detlef Knappe.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Marques Dos Santos, M., Li, C. et al. Recent advances in mass spectrometry analytical techniques for per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 414, 2795–2807 (2022). https://doi.org/10.1007/s00216-022-03905-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03905-y

Keywords

Navigation