Skip to main content
Log in

Three-dimensional graphene/amino-functionalized metal–organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Trace detection of multiple toxic heavy metals is a very important and difficult problem, conveniently, sensitively, and reliably. In this work, we developed an innovative electrochemical sensor for simultaneously detected heavy metal ions (Cd2+, Hg2+, Cu2+, and Pb2+). In order to detect trace amounts of Cd(II), Pb(II), Cu(II), and Hg(II) in food quickly, accurately, and at low cost, this study used electrochemical reduction to prepare a screen-printed electrode (3DGO) modified with 3DGO and UiO-66-NH2 composite nanomaterials (UiO-66-NH2/SPCE). The sensing platform is composed of three-dimensional graphene (3DGO), aminated UiO-66 metal–organic framework, named 3DGO/UiO-66-NH2. It is worth noting that the porous structure, amino functional groups on the surface, and large specific surface area of UiO-66-NH2 can enrich and promote the absorption of heavy metal ions. 3DGO was introduced to improve the electrochemical activity and conductivity of UiO-66-NH2 material. The construction of this new sensing platform, which can synchronously, reliably, and sensitively simultaneously detect Cd2+, Pb2+, Cu2+, and Hg2+ only in 150 s in the linear range of 0.01–0.35 pM with the detection limitations, is 10.90 fM, 5.98 fM, 2.89 fM, and 3.1 fM, respectively. This method provides a new strategy that uses MOF materials for electrochemical detection of a variety of heavy metal ions in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Christiane GD, Timothy J, Gerd S. Global mycotoxin occurrence in feed: a ten-year survey. Toxin. 2019;11(7):375.

    Article  Google Scholar 

  2. Karlovsky P, Suman M, Berthiller F. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016;32(4):179–205.

    Article  CAS  Google Scholar 

  3. Tao Y, Xie S, Xu F.Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem Toxicol. 2018 320–331

  4. Alshannaq A, Yu JH. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health. 2017;14(6):632.

    Article  Google Scholar 

  5. Kumar G, Mishra,Abbas.Food safety analysis using electrochemical biosensors. Foods. 2018;7:19–23

  6. Ya A, Dya B, Ssfk A. Advances in biosensors for the detection of ochratoxin A: bio-receptors, nanomaterials, and their applications. Biosens Bioelectron. 2019;141:111418–111418.

    Article  Google Scholar 

  7. Chdn A, Amg B, Dg C. Development of a third-generation biosensor to determine sterigmatocystin mycotoxin: an early warning system to detect aflatoxin B1. Talanta. 2019;194:253–8.

    Article  Google Scholar 

  8. Nisar U, Muhammad M, Ibrahim K, Ahsanulhaq Q. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC Trend Anal Chem. 2018;100:155–66.

    Article  Google Scholar 

  9. Cheng J, Ding C, Li X, Zhang T, Wang X. Heavy metals in navel orange orchards of Xinfeng County and their transfer from soils to navel oranges. Ecotox Environ Safe. 2015;122:153–8.

    Article  CAS  Google Scholar 

  10. Yang Q, Li Z, Lu X, Huang L. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ. 2018;642 690–700

  11. Li Z, Ma Z, Kuijp T. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 2014;468–469:843–53.

    Article  Google Scholar 

  12. Chen Z, Zhao Y, Zhu Y. Health risks of heavy metals in sewage-irrigated soils and edible seeds in Langfang of Hebei province. China J Sci Food Agric. 2010;90(2):314–20.

    Article  CAS  Google Scholar 

  13. Vareda JP, Valente A, Durães JM. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manage. 2019;246:101–18.

    Article  CAS  Google Scholar 

  14. Nedelescu M, Baconi D, Neagoe A. Environmental metal contamination and health impact assessment in two industrial regions of Romania. Sci Total Environ. 2017;580(15):984–95.

    Article  CAS  Google Scholar 

  15. Yu S, Wu X, Wang Y. 2D materials for optical modulation: challenges and opportunities. Adv Mater. 2017;29:14–9.

    Google Scholar 

  16. Gan X, Zhao H, Wong KY. Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection. Talanta. 2018;182:38–48.

    Article  CAS  Google Scholar 

  17. Bi L, Luan X, Geng F. Microwave-assisted synthesis of hollow microspheres with multicomponent nanocores for heavy-metal removal and magnetic sensing. ACS Appl Mater Interfaces. 2020;12(41)

  18. Roushani M, Valipour A, Saedi Z. Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode. Sensor Actuat B: Chem. 2016;233:419–25.

    Article  CAS  Google Scholar 

  19. Mitra S, Purkait T, Pramanik K. Three-dimensional graphene for electrochemical detection of cadmium in Klebsiella michiganensis to study the influence of cadmium uptake in rice plant. Mater Biol Appl. 2019:103:109802

  20. Bakhshpour M, Denizli A. Highly sensitive detection of Cd(II) ions using ion-imprinted surface plasmon resonance sensors. Microchem J. 2020; 159:105572

  21. Yin W, Dong X, Jie Y. MoS2-nanosheet-assisted coordination of metal ions with porphyrin for rapid detection and removal of cadmium ions in aqueous media. ACS Appl Mater Interfaces. 2017;9(25):62–70.

    Article  Google Scholar 

  22. Sengupta P, Pramanik K, Sarkar P. Simultaneous detection of trace Pb(II), Cd(II) and Hg(II) by anodic stripping analyses with glassy carbon electrode modified by solid phase synthesized iron-aluminate nano particles. Sensor Actuat B: Chem. 2020;89:20–5.

    Google Scholar 

  23. Zhang D, Yang S, Ma Q. Simultaneous multi-elemental speciation of As, Hg and Pb by inductively coupled plasma mass spectrometry interfaced with high-performance liquid chromatography. Food Chem. 2020;313:126–119.

    Google Scholar 

  24. Jayadevimanoranjitham J, Narayanan SS. A mercury free electrode based on poly O-cresophthalein complexone film matrixed MWCNTs modified electrode for simultaneous detection of Pb (II) and Cd (II). Microchem J. 2019;148:92–101.

    Article  CAS  Google Scholar 

  25. Trinta VDO, Padilha PDC, Petronilho S. Total metal content and chemical speciation analysis of iron, copper, zinc and iodine in human breast milk using high-performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection. Food Chem. 2020;326:126978

  26. Marcinkowska M, Barałkiewicz D. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: a review. Talanta. 2016;161:177–204.

    Article  CAS  Google Scholar 

  27. Parodi B, Savio M, Martinez LD. Study of carbon nanotubes and functionalized-carbon nanotubes as substrates for flow injection solid phase extraction associated to inductively coupled plasma with ultrasonic nebulization. Microchem J. 2011;98(2):225–30.

    Article  CAS  Google Scholar 

  28. Dutta S, Strack G, Kurup P. Gold nanostar electrodes for heavy metal detection. Sensor Actuat B: Chem. 2019;281:383–91.

    Article  CAS  Google Scholar 

  29. Dai Z, Wang Z. Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale. 2015;7(15):6420–31.

    Article  Google Scholar 

  30. Yao YZ, Tang L, Zeng G. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: a review. Sensor, Actuat B: Chem. 2016;223:280–94.

    Article  Google Scholar 

  31. Sung YM, Wu SP. Colorimetric detection of Cd(II) ions based on di-(1H-pyrrol-2-yl)methanethione functionalized gold nanoparticles. Sensor Actuat B: Chem. 2014;201:86–91.

    Article  CAS  Google Scholar 

  32. Almeida JS, Souza OCCO, Teixeira LSG. Determination of Pb, Cu and Fe in ethanol fuel samples by high-resolution continuum source electrothermal atomic absorption spectrometry by exploring a combination of sequential and simultaneous strategies. Microchem J. 2018;137:22–6.

    Article  CAS  Google Scholar 

  33. Kolling L, Zmozinski AV, Vale M. The use of dried matrix spot for determination of Pb and Ni in automotive gasoline by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta. 2019;205:120105–212233.

    Article  CAS  Google Scholar 

  34. Luo H, Wang X, Dai R. Simultaneous determination of arsenic and cadmium by hydride generation atomic fluorescence spectrometry using magnetic zero-valent iron nanoparticles for separation and pre-concentration. Microchem J. 2017;133:518–23.

    Article  CAS  Google Scholar 

  35. Pannem RM, Chintalapudi K. An intense review on the performance of graphene oxide and reduced graphene oxide in an admixed cement system. Constr Build Mater. 2020;259:20–5.

    Google Scholar 

  36. Ehtesabi H. Carbon nanomaterials for salivary-based biosensors: a review. Mater Today Chem. 2020;17:100342

  37. Gooding JJ. Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta. 2005;50(15):3049–60.

    Article  CAS  Google Scholar 

  38. Jacobs CB, Peairs MJ, Venton BJ. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta. 2010;662(2):105–27.

    Article  CAS  Google Scholar 

  39. Li M, Xiong Y, Liu X. Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale. 2015;7:892030

  40. Jiang R, Liu N, Gao S. A facile electrochemical sensor based on PyTS(-)CNTs for simultaneous determination of cadmium and lead ions. Sensors (Basel). 2018;18(5):1567.

    Article  Google Scholar 

  41. Gu C, Guo C, Li Z. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron. 2019;23:45–56.

    Google Scholar 

  42. Sladkevich S, Gun J, Prikhodchenko PV. The formation of a peroxoantimonate thin film coating on graphene oxide (GO) and the influence of the GO on its transformation to antimony oxides and elemental antimony. Carbon. 2012;50(15):5463–71.

    Article  CAS  Google Scholar 

  43. Xing H, Xu J, Zhu X. Highly sensitive simultaneous determination of cadmium(II) lead(II), copper(II), and mercury ions(II) on N-doped graphene modifified electrode. J Electroanal Chem. 2016;760:52–8.

    Article  CAS  Google Scholar 

  44. Gao F, Gao N, Nishitani A, Tanaka H. Rod-like hydroxyapatite and Nafion nanocomposite as an electrochemical matrix for simultaneous and sensitive detection of Hg2+, Cu2+ Pb2+ and Cd2+. J Electroanal Chem. 2016;775:212–8.

    Article  CAS  Google Scholar 

  45. Xiao L, Bing C, Hui J. Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electroanal, Chem. 2017;248:46–57.

    Google Scholar 

  46. Li S, Feng F, Chen S, et al. Preparation of UiO-66-NH2 and UiO-66-NH2/sponge for adsorption of 2,4 -dichlorophenoxyacetic acid in water. Ecotox Environ Safe. 2020;194:110440.

  47. Zhao Y, Guo HX, Han HG, et al. Adsorptive behavior of prepared metal-organic framework composites on phosphates in aqueous solutions. Adsorpt Sci Technol. 2021;5:1–10.

  48. Thiruppathi AR, Sidhureddy B, Keeler W, Chen AC. Flower-like MIL-100 (Cr) and its simultaneous determination of Cd2+ facile one-pot synthesis of flfluorinated graphene oxide for electrochemical sensing of heavy metal ions. Electrochem, Commun. 2017;76:42–6.

    Article  CAS  Google Scholar 

  49. Muralikrishna S, Sureshkumar K, Varley TS. In situ reduction and functionalization of graphene oxide with L-cysteine for simultaneous electrochemical determination of cadmium (II) lead(II), copper(II), and mercury(II) ions. Anal Methods-UK. 2014; 6:8698–8705

Download references

Funding

This work was supported by the Open Project of State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology (Grant No. QAK202110), The National Key R&D Program of China (2017YFC1602000), Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYB210739), Brew Microorganisms Technology and Application of Key Laboratory Project in Sichuan Province (No. NJ2020-03), Chongqing science and technology commission (CSTC2018jcyjAX0062), Chongqing Graduate Tutor Team Construction Project, and Analytical and Testing Center of Chongqing University for (SEM/TEM/XRD/HPLC-ICP-MS) the characterization of FT-IR and the sharing fund of Chongqing University’s large equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, D., Zhang, Y., Li, N. et al. Three-dimensional graphene/amino-functionalized metal–organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II). Anal Bioanal Chem 414, 1575–1586 (2022). https://doi.org/10.1007/s00216-021-03779-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03779-6

Keywords

Navigation