Skip to main content
Log in

A single-cell analytical approach to quantify activated caspase-3/7 during osteoblast proliferation, differentiation, and apoptosis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The protein heterogeneity at the single-cell level has been recognized to be vital for an understanding of various life processes during animal development. In addition, the knowledge of accurate quantity of relevant proteins at cellular level is essential for appropriate interpretation of diagnostic and therapeutic results. Some low-copy-number proteins are known to play a crucial role during cell proliferation, differentiation, and also in apoptosis. The fate decision is often based on the concentration of these proteins in the individual cells. This is likely to apply also for caspases, cysteine proteases traditionally associated with cell death via apoptosis but recently being discovered also as important factors in cell proliferation and differentiation. The hypothesis was tested in bone-related cells, where modulation of fate from apoptosis to proliferation/differentiation and vice versa is particularly challenging, e.g., towards anti-osteoporotic treatments and anti-cancer strategies. An ultrasensitive and highly selective method based on bioluminescence photon counting was used to quantify activated caspase-3/7 in order to demonstrate protein-level heterogeneity in individual cells within one population and to associate quantitative measurements with different cell fates (proliferation, differentiation, apoptosis). The results indicate a gradual increase of caspase-3/7 activation from the proliferative status to differentiation (more than three times) and towards apoptosis (more than six times). The findings clearly support one of the putative key mechanisms of non-apoptotic functions of pro-apoptotic caspases based on fine-tuning of their activation levels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999;6(11):1028–42. https://doi.org/10.1038/sj.cdd.4400598.

    Article  CAS  PubMed  Google Scholar 

  2. Kabigting JET, Toyama Y. Interplay between caspase, yes-associated protein, and mechanics: a possible switch between life and death? Curr Opin Cell Biol. 2020;67:141–6. https://doi.org/10.1016/j.ceb.2020.10.010.

    Article  CAS  PubMed  Google Scholar 

  3. Bell RAV, Megeney LA. Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ. 2017;24(8):1359–68. https://doi.org/10.1038/cdd.2017.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115–22. https://doi.org/10.1016/j.bone.2012.01.025.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Szymczyk KH, Freeman TA, Adams CS, Srinivas V, Steinbeck MJ. Active caspase-3 is required for osteoclast differentiation. J Cell Physiol. 2006;209(3):836–44. https://doi.org/10.1002/jcp.20770.

    Article  CAS  PubMed  Google Scholar 

  6. Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, et al. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest. 2004;114(12):1704–13. https://doi.org/10.1172/JCI20427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kratochvílová A, Veselá B, Ledvina V, Švandová E, Klepárník K, Dadáková K, et al. Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Sci Rep. 2020;10(1):7489. https://doi.org/10.1038/s41598-020-64294-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Svandova E, Vesela B, Tucker AS, Matalova E. Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front Physiol. 2018;9:174. https://doi.org/10.3389/fphys.2018.00174.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adamova E, Janeckova E, Kleparnik K, Matalova E. Caspases and osteogenic markers--in vitro screening of inhibition impact. In vitro cellular & developmental biology Animal. 2016;52(2):144–8. https://doi.org/10.1007/s11626-015-9964-1.

    Article  CAS  Google Scholar 

  10. Mogi M, Togari A. Activation of caspases is required for osteoblastic differentiation. J Biol Chem. 2003;278(48):47477–82. https://doi.org/10.1074/jbc.M307055200.

    Article  CAS  PubMed  Google Scholar 

  11. Connolly P, Garcia-Carpio I, Villunger A. Cell-cycle cross talk with caspases and their substrates. Cold Spring Harb Perspect Biol. 2020;12(6). https://doi.org/10.1101/cshperspect.a036475.

  12. Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017;24(8):1380–9. https://doi.org/10.1038/cdd.2017.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roux J, Hafner M, Bandara S, Sims JJ, Hudson H, Chai D, et al. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol Syst Biol. 2015;11(5):803. https://doi.org/10.15252/msb.20145584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Florentin A, Arama E. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. J Cell Biol. 2012;196(4):513–27. https://doi.org/10.1083/jcb.201107133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mokhtar-Ahmadabadi R, Madadi Z, Akbari-Birgani S, Grillon C, Hasani L, Hosseinkhani S, et al. Developing a circularly permuted variant of Renilla luciferase as a bioluminescent sensor for measuring Caspase-9 activity in the cell-free and cell-based systems. Biochem Biophys Res Commun. 2018;506(4):1032–9. https://doi.org/10.1016/j.bbrc.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng H, Li SY, Zheng HR, Li CX, Xie BR, Chen KW, et al. Multi-Förster resonance energy transfer-based fluorescent probe for spatiotemporal matrix metalloproteinase-2 and caspase-3 imaging. Anal Chem. 2017;89(8):4349–54. https://doi.org/10.1021/acs.analchem.7b00277.

    Article  CAS  PubMed  Google Scholar 

  17. den Hamer A, Dierickx P, Arts R, de Vries JSPM, Brunsveld L, Merkx M. Bright bioluminescent BRET sensor proteins for measuring intracellular caspase activity. ACS Sens. 2017;2(6):729–34. https://doi.org/10.1021/acssensors.7b00239.

    Article  CAS  Google Scholar 

  18. Ledvina V, Janeckova E, Matalova E, Kleparnik K. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells. Anal Bioanal Chem. 2017;409(1):269–74. https://doi.org/10.1007/s00216-016-9998-6.

    Article  CAS  PubMed  Google Scholar 

  19. Liskova M, Kleparnik K, Matalova E, Hegrova J, Prikryl J, Svandova E, et al. Bioluminescence determination of active caspase-3 in single apoptotic cells. Electrophoresis. 2013;34(12):1772–7. https://doi.org/10.1002/elps.201200675.

    Article  CAS  PubMed  Google Scholar 

  20. Sanders MG, Parsons MJ, Howard AG, Liu J, Fassio SR, Martinez JA, et al. Single-cell imaging of inflammatory caspase dimerization reveals differential recruitment to inflammasomes. Cell Death Dis. 2015;6:e1813. https://doi.org/10.1038/cddis.2015.186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu T, Yamaguchi Y, Shirasaki Y, Shikada K, Yamagishi M, Hoshino K, et al. Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response. Cell Rep. 2014;8(4):974–82. https://doi.org/10.1016/j.celrep.2014.07.012.

    Article  CAS  PubMed  Google Scholar 

  22. Antczak C, Takagi T, Ramirez CN, Radu C, Djaballah H. Live-cell imaging of caspase activation for high-content screening. J Biomol Screen. 2009;14(8):956–69. https://doi.org/10.1177/1087057109343207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Brien MA, Daily WJ, Hesselberth PE, Moravec RA, Scurria MA, Klaubert DH, et al. Homogeneous, bioluminescent protease assays: caspase-3 as a model. J Biomol Screen. 2005;10(2):137–48. https://doi.org/10.1177/1087057104271865.

    Article  CAS  PubMed  Google Scholar 

  24. Sato Y, Ishihara N, Nagayama D, Saiki A, Tatsuno I. 7-Ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway. Mol Genet Metab Rep. 2017;10:56–60. https://doi.org/10.1016/j.ymgmr.2017.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yazid MD, Ariffin SHZ, Senafi S, Razak MA, Wahab RMA. Determination of the differentiation capacities of murines’ primary mononucleated cells and MC3T3-E1 cells. Cancer Cell Int. 2010;10:42. https://doi.org/10.1186/1475-2867-10-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A. 2008;105(35):12815–9. https://doi.org/10.1073/pnas.0707715105.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Svandova E, Lesot H, Vanden Berghe T, Tucker AS, Sharpe PT, Vandenabeele P, et al. Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 2014;5:e1366. https://doi.org/10.1038/cddis.2014.330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi M, Geng X, Wang C, Guan Y. Quantification of low copy number proteins in single cells. Anal Chem. 2019;91(18):11493–6. https://doi.org/10.1021/acs.analchem.9b02989.

    Article  CAS  PubMed  Google Scholar 

  29. Qi G, Sun D, Tian Y, Xu C, Zhang Y, Wang D, et al. Fast activation and tracing of caspase-3 involved cell apoptosis by combined electrostimulation and smart signal-amplified SERS nanoprobes. Anal Chem. 2020;92(11):7861–8. https://doi.org/10.1021/acs.analchem.0c01114.

    Article  CAS  PubMed  Google Scholar 

  30. Cookson NA, Cookson SW, Tsimring LS, Hasty J. Cell cycle-dependent variations in protein concentration. Nucleic Acids Res. 2010;38(8):2676–81. https://doi.org/10.1093/nar/gkp1069.

    Article  CAS  PubMed  Google Scholar 

  31. Lin J, Amir A. Homeostasis of protein and mRNA concentrations in growing cells. Nat Commun. 2018;9(1):4496. https://doi.org/10.1038/s41467-018-06714-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by the Grant Agency of the Czech Republic, project no. 20-00726S. M.K. is Brno Ph.D. Talent Scholarship Holder funded by the Brno City Municipality.

Author information

Authors and Affiliations

Authors

Contributions

K. Klepárník and E. Matalová conceived and designed the experiments and contributed the reagents and materials. M. Killinger and M. Procházková performed the experiments and analyzed the data. M. Killinger, K. Klepárník, and B. Veselá wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Karel Klepárník.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Killinger, M., Veselá, B., Procházková, M. et al. A single-cell analytical approach to quantify activated caspase-3/7 during osteoblast proliferation, differentiation, and apoptosis. Anal Bioanal Chem 413, 5085–5093 (2021). https://doi.org/10.1007/s00216-021-03471-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03471-9

Keywords

Navigation