Skip to main content

Advertisement

Log in

Characterization of extracellular vesicles derived from mesenchymal stromal cells by surface-enhanced Raman spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are secreted by all cells into bodily fluids and play an important role in intercellular communication through the transfer of proteins and RNA. There is evidence that EVs specifically released from mesenchymal stromal cells (MSCs) are potent cell-free regenerative agents. However, for MSC EVs to be used in therapeutic practices, there must be a standardized and reproducible method for their characterization. The detection and characterization of EVs are a challenge due to their nanoscale size as well as their molecular heterogeneity. To address this challenge, we have fabricated gold nanohole arrays of varying sizes and shapes by electron beam lithography. These platforms have the dual purpose of trapping single EVs and enhancing their vibrational signature in surface-enhanced Raman spectroscopy (SERS). In this paper, we report SERS spectra for MSC EVs derived from pancreatic tissue (Panc-MSC) and bone marrow (BM-MSC). Using principal component analysis (PCA), we determined that the main compositional differences between these two groups are found at 1236, 761, and 1528 cm−1, corresponding to amide III, tryptophan, and an in-plane -C=C- vibration, respectively. We additionally explored several machine learning approaches to distinguish between BM- and Panc-MSC EVs and achieved 89 % accuracy, 89 % sensitivity, and 88 % specificity using logistic regression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lawson C, Vicencio JM, Yellon DM, Davidson SM. Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol. 2016;228(2):R57–71.

    Article  PubMed  Google Scholar 

  2. Veziroglu EM, Mias GI. Characterizing extracellular vesicles and their diverse RNA contents. Front Genet. 2020;11:700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shpacovitch V, Hergenröder R. Optical and surface plasmonic approaches to characterize extracellular vesicles. A review Anal Chim Acta. 2018;1005:1–15.

    Article  CAS  PubMed  Google Scholar 

  4. Ståhl A-L, Johansson K, Mossberg M, Kahn R, Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol. 2019;34(1):11–30.

    Article  PubMed  Google Scholar 

  5. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Margolis L, Sadovsky Y. The biology of extracellular vesicles: the known unknowns. PLoS Biol. 2019;17(7):e3000363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pang B, Zhu Y, Ni J, Thompson J, Malouf D, Bucci J, et al. Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics. 2020;10(5):2309–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mathew M, Zade M, Mezghani N, Patel R, Wang Y, Momen-Heravi F. Extracellular vesicles as biomarkers in cancer immunotherapy. Cancers (Basel). 2020;12(10):2825.

    Article  CAS  Google Scholar 

  9. De Jong OG, Van Balkom BWM, Schiffelers RM, Bouten CVC, Verhaar MC. Extracellular vesicles: potential roles in regenerative medicine. Front Immunol. 2014;5:608.

    PubMed  PubMed Central  Google Scholar 

  10. Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol. 2016;7:231.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Transl Res. 2018;196:1–16.

    Article  CAS  PubMed  Google Scholar 

  12. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):1556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takeda YS, Xu Q. Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS One. 2015;10(8):e0135111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. El Bassit G, Patel RS, Carter G, Shibu V, Patel AA, Song S, et al. E MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCdII in HT22 cells. Endocrinology. 2017;158(1):183–95.

    PubMed  Google Scholar 

  15. Ibrahim Ahmed G-E, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014;2(5):606–19.

    Article  CAS  Google Scholar 

  16. Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015;2015:761643.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Agarwal U, George A, Bhutani S, Ghosh-Choudhary S, Maxwell JT, Brown ME, et al. Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circ Res. 2017;120(4):701–12.

    Article  CAS  PubMed  Google Scholar 

  18. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nojima H, Freeman CM, Schuster RM, Japtok L, Kleuser B, Edwards MJ, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol. 2016;64(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  20. Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA, et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol. 2013;24(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC, et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther. 2016;7:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhang J, Chen C, Hu B, Niu X, Liu X, Zhang G, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through erk1/2 signaling. Int J Biol Sci. 2016;12(12):1472–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates miR-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8:72–82.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao B, Zhang Y, Han S, Zhang W, Zhou Q, Guan H, et al. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol. 2017;48(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  26. Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med. 2016;5(12):1620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 2016;12(7):836–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24(12):2135–40.

    Article  CAS  Google Scholar 

  29. Zhu Y, Wang Y, Zhao B, Niu X, Hu B, Li Q, et al. Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Res Ther. 2017;8(1):64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 2015;589(11):1257–65.

    Article  CAS  PubMed  Google Scholar 

  31. Choi JS, Yoon HI, Lee KS, Choi YC, Yang SH, Kim I-S, et al. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release. 2016;222:107–15.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2017;111:69–81.

    Article  CAS  PubMed  Google Scholar 

  33. Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med. 2017;6(4):1273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem. 2015;37(6):2415–24.

    Article  CAS  PubMed  Google Scholar 

  35. Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 2013;22(5):772–80.

    Article  CAS  PubMed  Google Scholar 

  36. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Article  PubMed  CAS  Google Scholar 

  37. Möller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer. 2020;20(12):697–709.

    Article  PubMed  CAS  Google Scholar 

  38. Moskovits M. Persistent misconceptions regarding SERS. Phys Chem Chem Phys. 2013;15(15):5301–11.

    Article  CAS  PubMed  Google Scholar 

  39. Rojalin T, Phong B, Koster HJ, Carney RP. Nanoplasmonic approaches for sensitive detection and molecular characterization of extracellular vesicles. Front Chem. 2019;7:279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C. Microfluidic technology for clinical applications of exosomes. Micromachines. 2019;10(6):392.

    Article  PubMed Central  Google Scholar 

  41. Zong S, Wang L, Chen C, Lu J, Zhu D, Zhang Y, et al. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal Methods. 2016;8(25):5001–8.

    Article  CAS  Google Scholar 

  42. Tian YF, Ning CF, He F, Yin BC, Ye BC. Highly sensitive detection of exosomes by SERS using gold nanostar@Raman reporter@nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor. Analyst. 2018;143(20):4915–22.

    Article  CAS  PubMed  Google Scholar 

  43. Beekman P, Enciso-Martinez A, Rho HS, Pujari SP, Lenferink A, Zuilhof H, et al. Immuno-capture of extracellular vesicles for individual multi-modal characterization using AFM, SEM and Raman spectroscopy Lab Chip. 2019;19(15):2526–36.

  44. Kwizera EA, O’Connor R, Vinduska V, Williams M, Butch ER, Snyder SE, et al. Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics. 2018;8(10):2722–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim N, Thomas MR, Bergholt MS, Pence IJ, Seong H, Charchar P, et al. Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nat Commun. 2020;11(1):207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee C, Carney RP, Hazari S, Smith ZJ, Knudson A, Robertson CS, et al. 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale. 2015;7(20):9290–7.

    Article  CAS  PubMed  Google Scholar 

  47. Sivashanmugan K, Huang W-L, Lin C-H, Liao J-D, Lin C-C, Su W-C, et al. Bimetallic nanoplasmonic gap-mode SERS substrate for lung normal and cancer-derived exosomes detection. J Taiwan Inst Chem Eng. 2017;80:149–55.

    Article  CAS  Google Scholar 

  48. Yan Z, Dutta S, Liu Z, Yu X, Mesgarzadeh N, Ji F, et al. A label-free platform for identification of exosomes from different sources. ACS Sens. 2019;4(2):488–97.

    Article  CAS  PubMed  Google Scholar 

  49. Gualerzi A, Niada S, Giannasi C, Picciolini S, Morasso C, Vanna R, et al. Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells. Sci Rep. 2017;7(1):9820.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gualerzi A, Kooijmans SAA, Niada S, Picciolini S, Brini AT, Camussi G, et al. Raman spectroscopy as a quick tool to assess purity of extracellular vesicle preparations and predict their functionality. J Extracell Vesicles. 2019;8(1):1568780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaufman L, Cooper T, Wallace G, Hawke D, Betts D, Hess D, et al. Trapping and SERS identification of extracellular vesicles using nanohole arrays. Proc SPIE 10894: Plasmonics in Biology and Medicine XVI, 108940B; 2019.

  52. Sherman SE, Kuljanin M, Cooper TT, Putman DM, Lajoie GA, Hess DA. High aldehyde dehydrogenase activity identifies a subset of human mesenchymal stromal cells with vascular regenerative potential. Stem Cells. 2017;35(6):1542–53.

    Article  CAS  PubMed  Google Scholar 

  53. Cooper TT, Sherman SE, Bell GI, Ma J, Kuljanin M, Jose SE, et al. Characterization of a vimentinhigh/nestinhigh proteome and tissue regenerative secretome generated by human pancreas-derived mesenchymal stromal cells. Stem Cells. 2020;38(5):666–82.

    Article  CAS  PubMed  Google Scholar 

  54. Cooper TT, Sherman SE, Bell GI, Dayarathna T, McRae DM, Ma J, et al. Ultrafiltration and injection of islet regenerative stimuli secreted by pancreatic mesenchymal stromal cells. Stem Cells Dev. 2021;30(5):247–64.

    Article  CAS  PubMed  Google Scholar 

  55. Haynes CL, McFarland AD, Van Duyne RP. Surface-enhanced Raman spectroscopy. Anal Chem. 2005;77(17):338 A-46 A.

    Article  Google Scholar 

  56. Sur UK. Surface-enhanced Raman spectroscopy. Resonance. 2010;15(2):154–64.

    Article  CAS  Google Scholar 

  57. Guo L, Jackman JA, Yang H-H, Chen P, Cho N-J, Kim D-H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today. 2015;10(2):213–39.

    Article  CAS  Google Scholar 

  58. Talari ACS, Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2015;50(1):46–111.

    Article  CAS  Google Scholar 

  59. Rehman IU, Movasaghi Z, Rehman. FTIR and Raman characteristic peak frequencies in biological studies. Vibrational spectroscopy for tissue analysis. Boca Raton: CRC Press. 2012;1:213–94.

  60. Stremersch S, Marro M, Pinchasik B-E, Baatsen P, Hendrix A, De Smedt SC, et al. Identification of individual exosome-like vesicles by surface enhanced Raman spectroscopy. Small. 2016;12(24):3292–301.

    Article  CAS  PubMed  Google Scholar 

  61. Huang Z, McWilliams A, Lui H, McLean DI, Lam S, Zeng H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer. 2003;107(6):1047–52.

    Article  CAS  PubMed  Google Scholar 

  62. Rau KR, Guerra A, Vogel A, Venugopalan V. Investigation of laser-induced cell lysis using time-resolved imaging. Appl Phys Lett. 2004;84(15):2940–2.

    Article  CAS  Google Scholar 

  63. Gazor M, Talesh SSA, Kavianpour A, Khatami M, Javidanbardan A, Hosseini SN. A novel cell disruption approach: effectiveness of laser-induced cell lysis of pichia pastoris in the continuous system. Biotechnol Bioproc E. 2018;23(1):49–54.

  64. Shin H, Oh S, Hong S, Kang M, Kang D. Ji Y-g, et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano. 2020;14(5):5435–44.

    Article  CAS  PubMed  Google Scholar 

  65. Howley T, Madden MG, O’Connell M-L, Ryder AG. The effect of principal component analysis on machine learning accuracy with high dimensional spectral data. Proc AI-2005: Applications and Innovcations in Intelligent Systems XII; 2005. p. 209-22.

  66. Qi Y. Random forest for bioinformatics. In: Zhang C, Ma Y, editors. Ensemble machine learning: Methods and applications. Boston, MA: Springer US; 2012. p. 307–23.

    Chapter  Google Scholar 

  67. Binkhonain M, Zhao L. A review of machine learning algorithms for identification and classification of non-functional requirements. Expert Syst Appl. 2019;1:100001.

    Google Scholar 

  68. Swe SM, Sett KM. Approaching rules induction CN2 algorithm in categorizing of biodiversity. Int J Trend Sci Res Dev. 2019;3(4):1581–4.

    Google Scholar 

  69. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35(5):352–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully thank the Nanofabrication Facility at the University of Western Ontario (Western University) for their assistance with the preparation of the platforms by electron-beam lithography.

Availability of data and material

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable

Funding

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada (DG RGPIN-2020-06676).

Author information

Authors and Affiliations

Authors

Contributions

Nina M. Ćulum: writing (original draft); investigation (nanofabrication and sample characterization); formal analysis; conceptualization.

Tyler T. Cooper: investigation (sample isolation and collection).

Gillian I. Bell: investigation (sample isolation and collection).

David A. Hess: supervision; conceptualization.

François Lagugné-Labarthet: supervision; writing (review and editing); conceptualization.

Corresponding author

Correspondence to François Lagugné-Labarthet.

Ethics declarations

Ethics approval

Ethics approval for the collection of human bone marrow was provided by the Western University Research Ethics Board (REB#12394).

Consent to participate

Informed written consent was acquired from all human bone marrow donors.

Consent for publication

All authors have given approval of the final version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćulum, N.M., Cooper, T.T., Bell, G.I. et al. Characterization of extracellular vesicles derived from mesenchymal stromal cells by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 413, 5013–5024 (2021). https://doi.org/10.1007/s00216-021-03464-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03464-8

Keywords

Navigation