Skip to main content

Advertisement

Log in

Development of a phage display-mediated immunoassay for the detection of vascular endothelial growth factor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Because of the critical role of vascular endothelial growth factor (VEGF) in angiogenesis and its significantly increased serum levels in early stages of cancer, VEGF is considered an important prognostic biomarker in different cancers. Herein, the amplification power of PCR combined with phage displaying anti-VEGF VHH, a sensitive real-time immunoassay, was precisely designed based on phage display-mediated immuno-PCR (PD-IPCR) for the detection of VEGF. This system benefits from strong and specific binding of antigen and antibody in a sandwich immunosorbent assay platform using avastin (anti-VEGF monoclonal antibody) as the capture antibody. The anti-VEGF phage particles were used as both anti-VEGF agent and DNA template in the PD-IPCR. Anti-VEGF phage ELISA showed a linear range of 3–250 ng/ml and a limit of detection (LOD) of 1.1 ng/ml. Using the PD-IPCR method, the linear range of VEGF detection was found to be 0.06–700 ng/ml, with a detection limit of 3 pg/ml. The recovery rate in serum ranged from 83% to 99%, with a relative standard deviation of 1.2–4.9%. These values indicate that the method has good sensitivity for use in clinical analysis. The proposed method was successfully applied to the clinical determination of VEGF in human serum samples, and the results showed excellent correlation with conventional ELISA (R2 = 0.995). The novel immunoassay provides a specific and sensitive immunoassay protocol for VEGF detection at very low levels.

Graphical abstract

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153(2):347–58.

    PubMed  CAS  Google Scholar 

  2. Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.

    PubMed  CAS  Google Scholar 

  3. Afuwape A, Kiriakidis S, Paleolog EM. The role of the angiogenic molecule VEGF in the pathogenesis of rheumatoid arthritis. Histol Histopathol. 2002;17(3):961–72.

    PubMed  CAS  Google Scholar 

  4. Marina ME, Roman II, Constantin A-M, Mihu CM, Tătaru AD. VEGF involvement in psoriasis. Clujul Med. 2015;88(3):247.

    PubMed  PubMed Central  Google Scholar 

  5. Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017;12:18–34.

    PubMed  PubMed Central  Google Scholar 

  6. Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet. 2003;34(4):383.

    PubMed  CAS  Google Scholar 

  7. Hata M, Yamashiro K, Ooto S, Oishi A, Tamura H, Miyata M, et al. Intraocular vascular endothelial growth factor levels in Pachychoroid Neovasculopathy and Neovascular age-related macular DegenerationIntraocular VEGF in nAMD. Investigative Ophthalmol Visual Sci. 2017;58(1):292–8.

    CAS  Google Scholar 

  8. Gupta N, Mansoor S, Sharma A, Sapkal A, Sheth J, Falatoonzadeh P, et al. Diabetic retinopathy and VEGF. Open Ophthalmol J. 2013;7:4.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Richard DE, Berra E, Pouysségur J. Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun. 1999;266(3):718–22.

    PubMed  CAS  Google Scholar 

  11. Kut C, Mac Gabhann F, Popel A. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Brit J Cancer. 2007;97(7):978.

    PubMed  CAS  Google Scholar 

  12. Volm M, Koomägi R, Mattern J. Prognostic value of vascular endothelial growth factor and its receptor Flt-1 in squamous cell lung cancer. Int J Cancer. 1997;74(1):64–8.

    PubMed  CAS  Google Scholar 

  13. Yoshiji H, Gomez DE, Shibuya M, Thorgeirsson UP. Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res. 1996;56(9):2013–6.

    PubMed  CAS  Google Scholar 

  14. Ellis LM, Takahashi Y, Fenoglio C, Cleary K, Bucana C, Evans D. Vessel counts and vascular endothelial growth factor expression in pancreatic adenocarcinoma. Eu J Cancer. 1998;34(3):337–40.

    CAS  Google Scholar 

  15. Tomisawa M, Tokunaga T, Oshika Y, Tsuchida T, Fukushima Y, Sato H, et al. Expression pattern of vascular endothelial growth factor isoform is closely correlated with tumour stage and vascularisation in renal cell carcinoma. Eur J Cancer. 1999;35(1):133–7.

    PubMed  CAS  Google Scholar 

  16. Sowter H, Corps A, Evans A, Clark D, Charnock-Jones D, Smith S. Expression and localization of the vascular endothelial growth factor family in ovarian epithelial tumors. Lab Investig J Tech Methods Pathol. 1997;77(6):607–14.

    CAS  Google Scholar 

  17. Li L, Wang L, Zhang W, Tang B, Zhang J, Song H, et al. Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer Res. 2004;24(3B):1973–9.

    PubMed  CAS  Google Scholar 

  18. Sampath P, Weaver CE, Sungarian A, Cortez S, Alderson L, Stopa EG. Cerebrospinal fluid (vascular endothelial growth factor) and serologic (recoverin) tumor markers for malignant glioma. Cancer Control. 2004;11(3):174–80.

    PubMed  Google Scholar 

  19. Mukozu T, Nagai H, Matsui D, Kanekawa T, Sumino Y. Serum VEGF as a tumor marker in patients with HCV-related liver cirrhosis and hepatocellular carcinoma. Anticancer Res. 2013;33(3):1013–21.

    PubMed  Google Scholar 

  20. Raghunathachar Sahana K, Akila P, Prashant V, Sharath Chandra B, Nataraj Suma M. Quantitation of vascular endothelial growth factor and Interleukin-6 in different stages of breast cancer. Rep Biochem Mol Biol. 2017;6(1):32–8.

    Google Scholar 

  21. Hefler L, Tempfer C, Obermair A, Frischmuth K, Sliutz G, Reinthaller A, et al. Serum concentrations of vascular endothelial growth factor in vulvar cancer. Clin Cancer Res. 1999;5(10):2806–9.

    PubMed  CAS  Google Scholar 

  22. Andrei SB, Lorand D, Ioana H, Tibor M, Klara B, Leonard A. The importance of vascular endothelial growth factor as a marker of angiogenesis and Lymphangiogenesis in non-small cell lung cancer. Acta Medica Marisiensis. 2015;61(4):367–71.

    CAS  Google Scholar 

  23. Larijani LV, Charati JY, Saravi NS. Evaluation of VEGF immunohistochemical expression and correlation with clinicopathologic features in colorectal cancer. Govaresh. 2015;20(3):199–204.

    Google Scholar 

  24. Brekken RA, Huang X, King SW, Thorpe PE. Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res. 1998;58(9):1952–9.

    PubMed  CAS  Google Scholar 

  25. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.

    PubMed  CAS  Google Scholar 

  26. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991;5(12):1806–14.

    PubMed  CAS  Google Scholar 

  27. Duyndam MC, Hilhorst MC, Schlüper HM, Verheul HM, Van Diest PJ, Kraal G, et al. Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. Am J Pathol. 2002;160(2):537–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Houck KA, Leung D, Rowland A, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem. 1992;267(36):26031–7.

    PubMed  CAS  Google Scholar 

  29. Asensio L, González I, García T, Martín R. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control. 2008;19(1):1–8.

    CAS  Google Scholar 

  30. Hosseini S, Vázquez-Villegas P, Rito-Palomares M. Martinez-Chapa SO. Advantages, Disadvantages and Modifications of Conventional ELISA. Enzyme-linked Immunosorbent Assay (ELISA). Springer; 2018. p. 67–115.

  31. Satija J, Punjabi N, Mishra D, Mukherji S. Plasmonic-ELISA: expanding horizons. RSC Adv. 2016;6(88):85440–56.

    CAS  Google Scholar 

  32. Azzazy HM, Highsmith WE. Phage display technology: clinical applications and recent innovations. Clin Biochem. 2002;35(6):425–45.

    PubMed  CAS  Google Scholar 

  33. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126.

    PubMed  CAS  Google Scholar 

  34. Shahangian SS, Sajedi RH, Hasannia S, Jalili S, Mohammadi M, Taghdir M, et al. A conformation-based phage-display panning to screen neutralizing anti-VEGF VHHs with VEGFR2 mimicry behavior. Int J Biol Macromol. 2015;77:222–34.

    PubMed  CAS  Google Scholar 

  35. Peltomaa R, Lopez-Perolio I, Benito-Pena E, Barderas R, Moreno-Bondi MC. Application of bacteriophages in sensor development. Anal Bioanal Chem. 2016;408(7):1805–28.

    PubMed  CAS  Google Scholar 

  36. Zhang H, Zhao Q, Li X-F, Le XC. Ultrasensitive assays for proteins. Analyst. 2007;132(8):724–37.

    PubMed  CAS  Google Scholar 

  37. Chen J, He Q-h, Xu Y, Fu J-h, Li Y-p, Tu Z, et al. Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein. Talanta. 2016;147:523–30.

    PubMed  CAS  Google Scholar 

  38. Wang X, He Q, Xu Y, Liu X, Shu M, Tu Z, et al. Anti-idiotypic VHH phage display-mediated immuno-PCR for ultrasensitive determination of mycotoxin zearalenone in cereals. Talanta. 2016;147:410–5.

    PubMed  CAS  Google Scholar 

  39. Lei J, Li P, Zhang Q, Wang Y, Zhang Z, Ding X, et al. Anti-idiotypic nanobody-phage based real-time immuno-PCR for detection of hepatocarcinogen aflatoxin in grains and feedstuffs. Anal Chem. 2014;86(21):10841–6.

    PubMed  CAS  Google Scholar 

  40. Liu X, Xu Y, Xiong Y-h, Tu Z, Li Y-p, He Z-y, et al. VHH phage-based competitive real-time immuno-polymerase chain reaction for ultrasensitive detection of ochratoxin a in cereal. Anal Chem. 2014;86(15):7471–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Shu M, Xu Y, Wang D, Liu X, Li Y, He Q, et al. Anti-idiotypic nanobody: a strategy for development of sensitive and green immunoassay for Fumonisin B1. Talanta. 2015;143:388–93.

    PubMed  CAS  Google Scholar 

  42. Christinger HW, YAM LT, Berleau BA, Keyt BC, Cunningham N, de Vos Ferrara AM. Crystallization of the receptor binding domain of vascular endothelial growth factor. Proteins Struct Funct Bioinforma. 1996;26:353–7.

    CAS  Google Scholar 

  43. Ghavamipour F, Shahangian SS, Sajedi RH, Arab SS, Mansouri K, Aghamaali MR. Development of a highly-potent anti-angiogenic VEGF 8–109 heterodimer by directed blocking of its VEGFR-2 binding site. FEBS J. 2014;281(19):4479–94.

    PubMed  CAS  Google Scholar 

  44. He F. Laemmli-sds-page. Bio-protocolBio. 2011;101:e80.

    Google Scholar 

  45. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.

    PubMed  CAS  Google Scholar 

  46. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    PubMed  CAS  Google Scholar 

  47. Paudyal B, Paudyal P, Shah D, Tominaga H, Tsushima Y, Endo K. Detection of vascular endothelial growth factor in colon cancer xenografts using bevacizumab based near infrared fluorophore conjugate. J Biomed Sci. 2014;21(1):35.

    PubMed  PubMed Central  Google Scholar 

  48. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Brit J Pharmacol. 2009;157(2):220–33.

    CAS  Google Scholar 

  49. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. nature. 1990;348(6301):552–4.

    PubMed  CAS  Google Scholar 

  50. Clackson T, Hoogenboom HR, Griffiths AD, Winter G. Making antibody fragments using phage display libraries. Nature. 1991;352(6336):624–8.

    PubMed  CAS  Google Scholar 

  51. Barbas CF, Kang AS, Lerner RA, Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. PNAS Proc Natl Acad Sci. 1991;88(18):7978–82.

    CAS  Google Scholar 

  52. Shumway SE, Burkholder JM, Morton SL. Harmful algal blooms: A compendium desk reference: John Wiley Sons; 2018.

  53. Kuebler KK, Davis MP, Moore CD. Palliative practices: An interdisciplinary approach. Elsevier Health Sciences; 2005.

  54. Lee HY, Contreras E, Register AC, Wu Q, Abadie K, Garcia K, et al. Development of a bioassay to detect T-cell-activating impurities for T-cell-dependent bispecific antibodies. Sci Rep. 2019;9(1):1–9.

    Google Scholar 

  55. Ibáñez GR. Assessment of solar photo-fenton in raceway pond reactors for micropollutant removal in secondary effluents from agro-food industry and municipal WWWTPs. Universidad Almería. 2017.

  56. Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559.

    PubMed  CAS  Google Scholar 

  57. Rodríguez A, Rodríguez M, Córdoba JJ, Andrade MJ. Design of primers and probes for quantitative real-time PCR methods. PCR Primer Design. Springer; 2015. p 31-56.

  58. Istamboulie G, Andreescu S, Marty J-L, Noguer T. Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosens Bioelectron. 2007;23(4):506–12.

    PubMed  CAS  Google Scholar 

  59. EliKine K, Kit HVE. EliKine™ Human VEGF ELISA Kit Booklet.

  60. Suzuki Y, Yokoyama K. Development of a fluorescent peptide for the detection of vascular endothelial growth factor (VEGF). ChemBioChem. 2009;10(11):1793–5.

    PubMed  CAS  Google Scholar 

  61. Crulhas BP, Karpik AE, Delella FK, Castro GR, Pedrosa VA. Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells. Anal Bioanal Chem. 2017;409(29):6771–80.

    PubMed  CAS  Google Scholar 

  62. Feng S, Mao S, Dou J, Li W, Li H, Lin J-M. An open-space microfluidic chip with fluid walls for online detection of VEGF via rolling circle amplification. Chem Sci. 2019;10(37):8571–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Li J, Sun K, Chen Z, Shi J, Zhou D, Xie G. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification. Biosens Bioelectron. 2017;89:964–9.

    PubMed  CAS  Google Scholar 

  64. Qureshi A, Gurbuz Y, Niazi JH. Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sens Actuators B: Chem. 2015;209:645–51.

    CAS  Google Scholar 

  65. Rizzo R, Alvaro M, Danz N, Napione L, Descrovi E, Schmieder S, et al. Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices. Sens Actuators B: Chem. 2018;255:2143–50.

    CAS  Google Scholar 

  66. May KM, Vogt A, Bachas LG, Anderson KW. Vascular endothelial growth factor as a biomarker for the early detection of cancer using a whole cell-based biosensor. Anal Bioanal Chem. 2005;382(4):1010–6.

    PubMed  CAS  Google Scholar 

  67. Pimková K, Bocková M, Hegnerová K, Suttnar J, Čermák J, Homola J, et al. Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes. Anal Bioanal Chem. 2012;402(1):381–7.

    PubMed  Google Scholar 

  68. Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N. Statistical significance of quantitative PCR. BMC bioinformatics. 2007;8(1):131.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the research council of Tarbiat Modares University and Ministry of Sciences, Research, and Technology for financial support. We also thank Dr. Mehrdad Behmanesh for his advice and for kindly providing equipment.

Author information

Authors and Affiliations

Authors

Contributions

ZSR performed all the experiments, analysed the data, and contributed to manuscript writing. SSS was involved in the discussions and revised the manuscript. SH contributed to manuscript revision and analysis of the data. RHS proposed the original idea, designed and supervised the experiments, formed the experimental concept and contributed to analysis of the data, provided intellectual input, and edited the manuscript.

Corresponding author

Correspondence to Reza H. Sajedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Human serum samples for real sample analysis were provided from Laleh hospital, Tehran, Iran (Ethical Committee approval ID: IR.MODARES.REC.1399.034, awarded by Medical Sciences of Tarbiat Modares University, Tehran, Iran). Human participants were not directly involved in the present study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, Z.S., Shahangian, S.S., Hasannia, S. et al. Development of a phage display-mediated immunoassay for the detection of vascular endothelial growth factor. Anal Bioanal Chem 412, 7639–7648 (2020). https://doi.org/10.1007/s00216-020-02901-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02901-4

Keywords

Navigation