Skip to main content
Log in

An improved drop casting electrochemical strategy for furosemide quantification in natural waters exploiting chemically reduced graphene oxide on glassy carbon electrodes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work exploits the applicability of a chemically reduced graphene oxide (CRGO) modification on the electrochemical response of a glassy carbon electrode (GCE) for the first-time sensitive determination of furosemide in natural waters. The batch injection analysis (BIA) is proposed as an analytical method, where CRGO-GCE is coupled to a BIA cell for amperometric measurements. Acetate buffer (0.1 μmol L−1, pH 5.2) was used as the background electrolyte. The modification provided an increase in sensitivity (0.024 μA/μmol L−1), low limit of detection (0.7 μmol L−1), RSD (< 4%), and broad linear range (1–600 μmol L−1). Recovery tests performed in two different concentration ranges resulted in values between 89 and 99%. Recovery tests were performed and compared with high-performance liquid chromatography (HPLC) with UV-Vis detection using Student’s t test at a 95% significance level, and no significant differences were found, confirming the accuracy of the method. The developed method is proven faster (169 h−1) compared with the HPLC analysis (5 h−1), also comparable with other flow procedures hereby described, offering a low-cost strategy suitable to quantify an emerging pharmaceutical pollutant.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Granero GE, Longhi MR, Mora MJ, Junginger HE, Midha KK, Shah VP, et al. Biowaiver monographs for immediate release solid oral dosage forms: furosemide. J Pharm Sci. 2010;99:2544–56.

    Article  CAS  Google Scholar 

  2. El-Saharty YS. Simultaneous high-performance liquid chromatographic assay of furosemide and propranolol HCL and its application in a pharmacokinetic study. J Pharm Biomed Anal. 2003;33:699–709.

    Article  CAS  Google Scholar 

  3. Gulsun T, Borna SE, Vural I, Sahin S. Preparation and characterization of furosemide nanosuspensions. J Drug Deliv Sci Technol. 2018;45:93–100.

    Article  CAS  Google Scholar 

  4. Doroshchuk VA, Gonta NA, Drozdova MV, Kulichenko SA. Determination of furosemide in urine by HPLC with preconcentration by micellar-extraction. J Anal Chem. 2009;64:1054–8.

    Article  CAS  Google Scholar 

  5. Chavan RR, Bhinge SD, Bhutkar MA, Randive DS. Development and validation of spectrophotometric methods for simultaneous estimation of citicoline and piracetam in tablet dosage form. ACTA Chem IASI. 2018;26:74–90.

    Article  CAS  Google Scholar 

  6. Bundgaard H, Nørgaard T, Nielsen NM. Photodegradation and hydrolysis of furosemide and furosemide esters in aqueous solutions. Int J Pharm. 1988;42:217–24.

    Article  CAS  Google Scholar 

  7. Cruz JE, Maness DD, Yakatan GJ. Kinetics and mechanism of hydrolysis of furosemide. Int J Pharm. 1979;2:275–81.

    Article  CAS  Google Scholar 

  8. Bagnall JP, Evans SE, Wort MT, Lubben AT, Kasprzyk-Hordern B. Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level. J Chromatogr A. 2012;1249:115–29.

    Article  CAS  Google Scholar 

  9. Olvera-Vargas H, Leroy S, Rivard M, Oturan N, Oturan M, Buisson D. Microbial biotransformation of furosemide for environmental risk assessment: identification of metabolites and toxicological evaluation. Environ Sci Pollut Res. 2016;23:22691–700.

    Article  CAS  Google Scholar 

  10. Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography. 2nd ed. New York; 2010.

  11. Semaan FS, Neto AJDS, Lanças FM, Gomes Cavalheiro ÉT. Rapid HPLC-DAD determination of furosemide in tablets using a short home-made column. Anal Lett. 2005;38:1651–8.

    Article  CAS  Google Scholar 

  12. Semaan FS, De Sousa RA, Cavalheiro ÉTG. Flow injection spectrophotometric determination of furosemide in pharmaceuticals by the bleaching of a permanganate carrier solution. J Flow Inject Anal. 2005;22:34–7.

    CAS  Google Scholar 

  13. Semaan FS, Cavalheiro ÉTG. Spectrophotometric determination of furosemide based on its complexation with Fe(III) in ethanolic medium using a flow injection procedure. Anal Lett. 2006;39:2557–67.

    Article  CAS  Google Scholar 

  14. Semaan FS, Nogueira PA, Cavalheiro ÉTG. Flow-based fluorimetric determination of furosemide in pharmaceutical formulations and biological samples: use of micelar media to improve sensitivity. Anal Lett. 2008;41:66–79.

    Article  CAS  Google Scholar 

  15. Da Silva Neto AA, Pacheco WF, Semaan FS. Spectrophotometric determination of furosemide in pharmaceutical formulations - a didactic approach, from practice to theory. Ecletica Quim. 2012;37:30–7.

    Article  Google Scholar 

  16. Semaan FS, Pinto EM, Cavalheiro ÉTG, Brett CMA. A graphite-polyurethane composite electrode for the analysis of furosemide. Electroanalysis. 2008;20:2287–93.

    Article  CAS  Google Scholar 

  17. Hasanzadeh M, Pournaghi-Azar MH, Shadjou N, Jouyban A. A new mechanistic approach to elucidate furosemide electrooxidation on magnetic nanoparticles loaded on graphene oxide modified glassy carbon electrode. RSC Adv. 2014;4:6580–90.

    Article  CAS  Google Scholar 

  18. De Mendonça RX, Buzzetti PHM, Silva AL, Araújo AS, Ponzio EA, Semaan FS. Voltammetric determination of sildenafil citrate and furosemide at composite electrodes of graphite-paraffin for use in samples of pharmaceutical and toxicological interests. Rev Virtual Quim. 2015;7:1692–708.

    Article  Google Scholar 

  19. Kor K, Zarei K. Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer. Talanta. 2016;146:181–7.

    Article  CAS  Google Scholar 

  20. Heidarimoghadam R, Farmany A. Rapid determination of furosemide in drug and blood plasma of wrestlers by a carboxyl-MWCNT sensor. Mater Sci Eng C. 2016;58:1242–5.

    Article  CAS  Google Scholar 

  21. Attaallah R, Antonacci A, Arduini F, Amine A, Scognamiglio V. Nanobiosensors for bioclinical applications: pros and cons. Green Nanoparticles. 2020:117–49.

  22. Torrinha Á, Oliveira TMBF, Ribeiro FWP, Correia AN, Lima-Neto P, Morais S. Application of nanostructured carbon-based electrochemical (bio)sensors for screening of emerging pharmaceutical pollutants in waters and aquatic species: a review. Nanomaterials. 2020;10:1–29.

    Article  Google Scholar 

  23. Medeiros RA, Baccarin M, Fatibello-Filho O, Rocha-Filho RC, Deslouis C, Debiemme-Chouvy C. Comparative study of basal-plane pyrolytic graphite, boron-doped diamond, and amorphous carbon nitride electrodes for the voltammetric determination of furosemide in pharmaceutical and urine samples. Electrochim Acta. 2016;197:179–85.

    Article  CAS  Google Scholar 

  24. Wang J, Taha Z. Batch injection analysis. Anal Chem. 1991;63:1053–6.

    Article  CAS  Google Scholar 

  25. Quintino MSM, Angnes L. Batch injection analysis: an almost unexplored powerful tool. Electroanalysis. 2004;16:513–23.

    Article  CAS  Google Scholar 

  26. Almeida ES, Richter EM, Munoz RAA. Voltammetric lead determination in aviation fuel samples using a screen-printed gold electrode and batch-injection analysis. Electroanalysis. 2016;28:633–9.

    Article  CAS  Google Scholar 

  27. Freitas JM, Oliveira TDC, Gimenes DT, Munoz RAA, Richter EM. Simultaneous determination of three species with a single-injection step using batch injection analysis with multiple pulse amperometric detection. Talanta. 2016;146:670–5.

    Article  CAS  Google Scholar 

  28. Montes RHO, Lima AP, Dos Santos VB, Vidal DTR, Do Lago CL, Richter EM, et al. Carbon-nanotube amperometric sensor for selective determination of 4-chloroaniline in commercial chlorhexidine solutions. Sensors Actuators B Chem. 2016;231:38–44.

    Article  CAS  Google Scholar 

  29. Pedrotti JJ, Angnes L, Gutz IGR. Miniaturized reference electrodes with microporous polymer junctions. Electroanalysis. 1996;8:673–5.

    Article  Google Scholar 

  30. Rocha DP, Dornellas RM, Cardoso RM, Narciso LCD, Silva MNT, Nossol E, et al. Chemically versus electrochemically reduced graphene oxide: improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces. Sensors Actuators B Chem. 2018;254:701–8.

    Article  CAS  Google Scholar 

  31. Cardoso RM, Mendonça DMH, Silva WP, Silva MNT, Nossol E, da Silva RAB, et al. 3D printing for electroanalysis: from multiuse electrochemical cells to sensors. Anal Chim Acta. 2018;1033:49–57.

    Article  CAS  Google Scholar 

  32. Da Silva FD, Rocha DP, Silva MNT, Nossol E, Muñoz RAA, Semaan FS, et al. Chemically reduced graphene oxide on gold electrodes from recordable CDs: characterization and potential sensing applications. J Braz Chem Soc. 2020;31:429–37.

    Google Scholar 

  33. Barroso MB, Jiménez RM, Alonso RM, Ortiz E. Determination of piretanide and furosemide in pharmaceuticals and human urine by high-performance liquid chromatography with amperometric detection. J Chromatogr B. 1996;675:303–12.

    Article  CAS  Google Scholar 

  34. Bukkitgar SD, Shetti NP. Electrochemical oxidation of loop diuretic furosemide in aqueous acid medium and its analytical application. Cogent Chem. 2016;2:1–10.

    Article  Google Scholar 

  35. Silva EF, Tanaka AA, Fernandes RN, Alejandro R, Munoz A, da Silva IS. Batch injection analysis with electrochemical detection for the simultaneous determination of the diuretics furosemide and hydrochlorothiazide in synthetic urine and pharmaceutical samples. Microchem J. 2020;In Press.

Download references

Funding

The authors received financial support from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

Investigation: Sancler da Costa Vasconcelos, Eduardo Magalhaes Rodrigues, Leonardo Gomes de Almeida; validation: Sancler da Costa Vasconcelos, Eduardo Magalhaes Rodrigues, Leonardo Gomes de Almeida; conceptualization: Sancler da Costa Vasconcelos, Leonardo Gomes de Almeida, Fabio Grandis Lepri, Wagner Felippe Pacheco, Felipe Silva Semaan, Rafael Machado Dornellas; methodology: Sancler da Costa Vasconcelos, Leonardo Gomes de Almeida; formal analysis: Sancler da Costa Vasconcelos, Leonardo Gomes de Almeida; writing—original draft: Sancler da Costa Vasconcelos, Leonardo Gomes de Almeida, Felipe Silva Semaan, Rafael Machado Dornellas; project administration: Fabio Grandis Lepri, Wagner Felippe Pacheco, Felipe Silva Semaan, Rafael Machado Dornellas; writing—review and editing: Fabio Grandis Lepri, Wagner Felippe Pacheco, Felipe Silva Semaan, Rafael Machado Dornellas; supervision: Fabio Grandis Lepri, Wagner Felippe Pacheco, Felipe Silva Semaan, Rafael Machado Dornellas; resources: Fabio Grandis Lepri, Wagner Felippe Pacheco, Felipe Silva Semaan, Rafael Machado Dornellas; funding acquisition: Wagner Felippe Pacheco, Rafael Machado Dornellas

Corresponding author

Correspondence to Rafael M. Dornellas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 227 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasconcelos, S.C., Rodrigues, E.M., de Almeida, L.G. et al. An improved drop casting electrochemical strategy for furosemide quantification in natural waters exploiting chemically reduced graphene oxide on glassy carbon electrodes. Anal Bioanal Chem 412, 7123–7130 (2020). https://doi.org/10.1007/s00216-020-02845-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02845-9

Keywords

Navigation