Skip to main content

Advertisement

Log in

Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aptamers are chemically synthetic single-stranded DNA or RNA molecules selected by molecular evolution. They have been widely used as attractive tools in biosensing and bioimaging because they can bind to a large variety of targets with high sensitivity and high affinity and specificity. As recognition elements, aptamers contribute in particular to cancer diagnostics by recognizing different cancer biomarkers, while they can also facilitate ultrasensitive detection by further employing signal amplification elements. Optical techniques have been widely used for direct and real-time monitoring of cancer-related biomolecules and bioprocesses due to the high sensitivity, quick response, and simple operation, which has greatly benefited cancer diagnostics. In this review, we highlight recent advances in optical platform-based sensing strategies for cancer diagnostics aided by aptamers. Limitations and current challenges are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zuo XL, Song SP, Zhang J, Pan D, Wang LH, Fan CH. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc. 2007;129(5):1042–3.

    Article  CAS  PubMed  Google Scholar 

  2. Liu Q, Peng YJ, Xu JC, Ma C, Li LL, Mao CJ, et al. Label-free Electrochemiluminescence Aptasensor for highly sensitive detection of Acetylcholinesterase based on au-nanoparticle-functionalized g-C3N4 Nanohybrid. Chemelectrochem. 2017;4(7):1768–74.

    Article  CAS  Google Scholar 

  3. Cao Y, Chen DH, Chen WW, Yu JC, Chen Z, Li GX. Aptamer-based homogeneous protein detection using cucurbit[7]uril functionalized electrode. Anal Chim Acta. 2014;812:45–9.

    Article  CAS  PubMed  Google Scholar 

  4. Miao P, Tang YG, Wang BD, Han K, Chen XF, Sun HX. An aptasensor for detection of potassium ions based on RecJ(f) exonuclease mediated signal amplification. Analyst. 2014;139(22):5695–9.

    Article  CAS  PubMed  Google Scholar 

  5. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment - Rna ligands to bacteriophage-T4 DNA-polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  PubMed  Google Scholar 

  6. Ellington AD, Szostak JW. Invitro selection of Rna molecules that bind specific ligands. Nature. 1990;346(6287):818–22.

    Article  CAS  PubMed  Google Scholar 

  7. Meng FY, Han K, Wang BD, Liu T, Liu GX, Li YR, et al. Nanoarchitectured electrochemical Cytosensor for selective detection of Cancer cells. Chemistryselect. 2016;1(7):1515–7.

    Article  CAS  Google Scholar 

  8. Sheng LL, Lu YH, Deng S, Liao XY, Zhang KX, Ding T, et al. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun. 2019;55(68):10096–9.

    Article  CAS  Google Scholar 

  9. Wang J, Cheng WB, Meng FY, Yang M, Pan Y, Miao P. Hand-in-hand RNA nanowire-based aptasensor for the detection of theophylline. Biosens Bioelectron. 2018;101:153–8.

    Article  CAS  PubMed  Google Scholar 

  10. Morozova N, Allers J, Myers J, Shamoo Y. Protein-RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures. Bioinformatics. 2006;22(22):2746–52.

    Article  CAS  PubMed  Google Scholar 

  11. Zimmermann GR, Jenison RD, Wick CL, Simorre JP, Pardi A. Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat Struct Biol. 1997;4(8):644–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wen YL, Pei H, Wan Y, Su Y, Huang Q, Song SP, et al. DNA nanostructure-decorated surfaces for enhanced Aptamer-target binding and electrochemical cocaine sensors. Anal Chem. 2011;83(19):7418–23.

    Article  CAS  PubMed  Google Scholar 

  13. Liu HY, Xu SM, He ZM, Deng AP, Zhu JJ. Supersandwich Cytosensor for selective and ultrasensitive detection of Cancer cells using Aptamer-DNA Concatamer-quantum dots probes. Anal Chem. 2013;85(6):3385–92.

    Article  CAS  PubMed  Google Scholar 

  14. Gu HD, Yang YY, Chen F, Liu TT, Jin J, Pan Y, et al. Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJ(f) exonuclease-mediated amplification. Chem Eng J. 2018;353:305–10.

    Article  CAS  Google Scholar 

  15. Huang Y, Li H, Wang L, Mao XX, Li GX. Highly sensitive protein detection based on smart hybrid Nanocomposite-controlled switch of DNA polymerase activity. Acs Appl Mater Inter. 2016;8(41):28202–7.

    Article  CAS  Google Scholar 

  16. Miao P, Yang DW, Chen XF, Guo ZZ, Tang YG. Voltammetric determination of tumor necrosis factor-alpha based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles. Microchim Acta. 2017;184(10):3901–7.

    Article  CAS  Google Scholar 

  17. Yang DW, Tang YG, Guo ZZ, Chen XF, Miao P. Proximity aptasensor for protein detection based on an enzyme-free amplification strategy. Mol BioSyst. 2017;13(10):1936–9.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Chen H, Cao Y, Feng C, Zhu XL, Li GX. Design Nanoprobe based on its binding with amino acid residues on cell surface and its application to electrochemical analysis of cells. Anal Chem. 2019;91(1):1005–10.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng WB, Xu J, Guo ZZ, Yang DW, Chen XF, Yan W, et al. Hydrothermal synthesis of N,S co-doped carbon nanodots for highly selective detection of living cancer cells. J Mater Chem B. 2018;6(36):5775–80.

    Article  CAS  PubMed  Google Scholar 

  20. Miao P, Tang Y. Gold nanoparticles-based multipedal DNA Walker for Ratiometric detection of circulating tumor cell. Anal Chem. 2019;91(23):15187–92.

    Article  CAS  PubMed  Google Scholar 

  21. Cruz-Toledo J, McKeague M, Zhang XR, Giamberardino A, McConnell E, Francis T, DeRosa MC, Dumontier M (2012) Aptamer base: a collaborative knowledge base to describe aptamers and SELEX experiments. Database-Oxford.

  22. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33(6):1141–61.

    Article  CAS  PubMed  Google Scholar 

  23. Stoltenburg R, Reinemann C, Strehlitz B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403.

    Article  CAS  PubMed  Google Scholar 

  24. Hassan EM, DeRosa MC (2020) Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors Trac-Trend Anal Chem 124.

  25. Ma XY, Guo ZZ, Mao ZQ, Tang YG, Miao P. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Microchim Acta. 2018;185(1).

  26. Song S, Wang L, Li J, Fan C, Zhao J. Aptamer-based biosensors. TrAC Trends Anal Chem. 2008;27(2):108–17.

    Article  CAS  Google Scholar 

  27. Chen XF, Guo ZZ, Tang YG, Shen Y, Miao P. A highly sensitive gold nanoparticle-based electrochemical aptasensor for theophylline detection. Anal Chim Acta. 2018;999:54–9.

    Article  CAS  PubMed  Google Scholar 

  28. Diaz-Amaya S, Lin LK, Deering AJ, Stanciu LA. Aptamer-based SERS biosensor for whole cell analytical detection of E. coli O157:H7. Anal Chim Acta. 2019;1081:146–56.

    Article  CAS  PubMed  Google Scholar 

  29. Han K, Liu T, Wang YH, Miao P. Electrochemical aptasensors for detection of small molecules, macromolecules, and cells. Rev Anal Chem. 2016;35(4):201–11.

    Article  CAS  Google Scholar 

  30. Li F, Zhang HQ, Wang ZX, Newbigging AM, Reid MS, Li XF, et al. Aptamers facilitating amplified detection of biomolecules. Anal Chem. 2015;87(1):274–92.

    Article  CAS  PubMed  Google Scholar 

  31. Kou XY, Liu T, Yang XB, Tang YG, Gong X, Miao P. Role of Tripodal DNA modified Gold nanoparticles in colorimetric Aptasensing. Colloid Interfac Sci. 2017;21:19–21.

    Article  CAS  Google Scholar 

  32. Miao P, Tang YG, Wang BD, Yin J, Ning LM. Signal amplification by enzymatic tools for nucleic acids. Trac-Trend Anal Chem. 2015;67:1–15.

    Article  CAS  Google Scholar 

  33. Ferreira CSM, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S. DNA aptamers against the MUC1 tumour marker: design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem. 2008;390(4):1039–50.

    Article  CAS  PubMed  Google Scholar 

  34. Park JH, Cho YS, Kang S, Lee EJ, Lee GH, Hah SS. A colorimetric sandwich-type assay for sensitive thrombin detection based on enzyme-linked aptamer assay. Anal Biochem. 2014;462:10–2.

    Article  CAS  PubMed  Google Scholar 

  35. Zou MJ, Wang SY. An Aptamer-based self-catalytic colorimetric assay for Carcinoembryonic antigen. B Korean Chem Soc. 2017;38(10):1143–8.

    Article  CAS  Google Scholar 

  36. Zhu X, Cao Y, Liang Z, Li G. Aptamer-based and DNAzyme-linked colorimetric detection of cancer cells. Protein & cell. 2010;1(9):842–6.

    Article  CAS  Google Scholar 

  37. Shahbazi N, Hosseinkhani S, Ranjbar B. A facile and rapid aptasensor based on split peroxidase DNAzyme for visual detection of carcinoembryonic antigen in saliva. Sensor Actuat B-Chem. 2017;253:794–803.

    Article  CAS  Google Scholar 

  38. Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta. 2016;184(2):1–20.

    Google Scholar 

  39. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z, Wang Z, Wang X, Yang X. Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sensors & Actuators B Chemical. 2010;147(2):428–33.

    Article  CAS  Google Scholar 

  41. Wang K, Fan D, Liu Y, Wang E. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron. 2015;73:1–6.

    Article  CAS  PubMed  Google Scholar 

  42. Xiang SY, Yang P, Guo H, Zhang S, Zhang XK, Zhu F, et al. Green tea makes polyphenol nanoparticles with radical-scavenging activities. Macromol Rapid Comm. 2017;38(23).

  43. Wang Z, Carniato F, Xie YJ, Huang YR, Li YW, He S, et al. High Relaxivity gadolinium-polydopamine nanoparticles. Small. 2017;13(43).

  44. Li C, Lu JY, Hu XL, Feng C, Xiang Y, Karamanos Y, et al. Assembly of nanoconjugates as new kind inhibitor of the aggregation of amyloid peptides associated with Alzheimer’s disease. Part Part Syst Charact. 2018;35(3).

  45. Miao P, Tang YG, Mao ZQ, Liu YZ. Adamantane derivatives functionalized Gold nanoparticles for colorimetric detection of MiRNA. Part Part Syst Charact. 2017;34(6).

  46. Huang CC, Huang YF, Cao Z, Tan W, Chang HT. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem. 2005;77(17):5735–41.

    Article  CAS  PubMed  Google Scholar 

  47. Lin TE, Chen WH, Shiang YC, Huang CC, Chang HT. Colorimetric detection of platelet-derived growth factors through competitive interactions between proteins and functional gold nanoparticles. Biosens Bioelectron. 2011;29(1):204–9.

    Article  PubMed  CAS  Google Scholar 

  48. Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Annu Rev Anal Chem. 2015;2(1):241–64.

    Article  Google Scholar 

  49. Jiang YX, Fang XH, Bai CL. Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem. 2004;76(17):5230–5.

    Article  CAS  PubMed  Google Scholar 

  50. Lin X, Leung KH, Lin L, Lin L, Lin S, Leung CH, et al. Determination of cell metabolite VEGF(1)(6)(5) and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens Bioelectron. 2016;79:41–7.

    Article  CAS  PubMed  Google Scholar 

  51. Wang K, He MQ, Zhai FH, He RH, Yu YL. A label-free and enzyme-free ratiometric fluorescence biosensor for sensitive detection of carcinoembryonic antigen based on target-aptamer complex recycling amplification. Sensor Actuat B-Chem. 2017;253:893–9.

    Article  CAS  Google Scholar 

  52. Zhao L, Tang C, Xu L, Zhang Z, Li X, Hu H, et al. Enhanced and differential capture of circulating tumor cells from lung Cancer patients by microfluidic assays using Aptamer cocktail. Small. 2016;12(8):1072–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miao P, Han K, Tang YG, Wang BD, Lin T, Cheng WB. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–95.

    Article  CAS  PubMed  Google Scholar 

  54. Jiang YT, Ma XY, Shao XJ, Wang MY, Jiang Y, Miao P. Chameleon silver nanoclusters for ratiometric sensing of miRNA. Sensor Actuat B-Chem. 2019;297:126788.

    Article  CAS  Google Scholar 

  55. Yang YY, Wang XF, Liao GC, Liu XQ, Chen QL, Li HM, et al. iRGD-decorated red shift emissive carbon nanodots for tumor targeting fluorescence imaging. J Colloid Interf Sci. 2018;509:515–21.

    Article  CAS  Google Scholar 

  56. Sun SJ, Guan QW, Liu Y, Wei B, Yang YY, Yu ZQ. Highly luminescence manganese doped carbon dots. Chinese Chem Lett. 2019;30(5):1051–4.

    Article  CAS  Google Scholar 

  57. Motaghi H, Mehrgardi MA, Bouvet P. Carbon dots-AS1411 Aptamer Nanoconjugate for ultrasensitive Spectrofluorometric detection of Cancer cells. Sci Rep. 2017;7(1):10513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yin J, He X, Wang K, Xu F, Shangguan J, He D, et al. Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization. Anal Chem. 2013;85(24):12011–9.

    Article  CAS  PubMed  Google Scholar 

  59. Jiang YT, Tang YG, Miao P. Polydopamine nanosphere@silver nanoclusters for fluorescence detection of multiplex tumor markers. Nanoscale. 2019;11(17):8119–23.

    Article  CAS  PubMed  Google Scholar 

  60. Jo H, Her J, Ban C. Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron. 2015;71:129–36.

    Article  CAS  PubMed  Google Scholar 

  61. Smith JE, Medley CD, Tang Z, Shangguan D, Lofton C, Tan W. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem. 2007;79(8):3075–82.

    Article  CAS  PubMed  Google Scholar 

  62. Hu ZX, Tan JT, Lai ZQ, Zheng R, Zhong JH, Wang YW, Li XX, Yang N, Li JP, Yang W, Huang Y, Zhao YX, Lu XL (2017) Aptamer Combined with Fluorescent Silica Nanoparticles for Detection of Hepatoma Cells Nanoscale Res Lett 12.

  63. Sheng ZH, Hu DH, Zhang PF, Gong P, Gao DY, Liu SH, et al. Cation exchange in aptamer-conjugated CdSe nanoclusters: a novel fluorescence signal amplification for cancer cell detection. Chem Commun. 2012;48(35):4202–4.

    Article  CAS  Google Scholar 

  64. Meng FY, Chai H, Ma XY, Tang YG, Miao P. FRET investigation toward DNA tetrahedron-based ratiometric analysis of intracellular telomerase activity. J Mater Chem B. 2019;7(11):1926–32.

    Article  CAS  PubMed  Google Scholar 

  65. Hamdghadareh S, Salimi A, Fathi F, Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron. 2017;96:308–16.

    Article  CAS  Google Scholar 

  66. Pereira M, Tome D, Domingues AS, Varanda AS, Paulo C, Santos MAS, et al. A fluorescence-based sensor assay that monitors general protein aggregation in human cells. Biotechnol J. 2018;13(4):–e1700676.

  67. Kopra K, Syrjanpaa M, Hanninen P, Harma H. Non-competitive aptamer-based quenching resonance energy transfer assay for homogeneous growth factor quantification. Analyst. 2014;139(8):2016–23.

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y, Bao L, Liu Z, Pang DW. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem. 2011;83(21):8130–7.

    Article  CAS  PubMed  Google Scholar 

  69. Huang CC, Chiu SH, Huang YF, Chang HT. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal Chem. 2007;79(13):4798–804.

    Article  CAS  PubMed  Google Scholar 

  70. Yang T, Hou P, Zheng LL, Zhan L, Gao PF, Li YF, et al. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. Nanoscale. 2017;9(43):17020–8.

    Article  CAS  PubMed  Google Scholar 

  71. Shi H, He XX, Wang KM, Wu X, Ye XS, Guo QP, et al. Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. P Natl Acad Sci USA. 2011;108(10):3900–5.

    Article  CAS  Google Scholar 

  72. Zhao B, Wu P, Zhang H, Cai C. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens Bioelectron. 2015;68:763–70.

    Article  CAS  PubMed  Google Scholar 

  73. Kong RM, Ding L, Wang Z, You J, Qu F. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem. 2015;407(2):369–77.

    Article  CAS  PubMed  Google Scholar 

  74. Niazi JH, Verma SK, Niazi S, Qureshi A. In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst. 2015;140(1):243–9.

    Article  CAS  PubMed  Google Scholar 

  75. Li H, Shi L, Sun DE, Li PW, Liu ZH. Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens Bioelectron. 2016;86:791–8.

    Article  CAS  PubMed  Google Scholar 

  76. Wang H, Chen H, Huang Z, Li T, Deng A, Kong J. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta. 2018;184:219–26.

    Article  CAS  PubMed  Google Scholar 

  77. Yan L, Shi H, He X, Wang K, Tang J, Chen M, et al. A versatile activatable fluorescence probing platform for cancer cells in vitro and in vivo based on self-assembled aptamer/carbon nanotube ensembles. Anal Chem. 2014;86(18):9271–7.

    Article  CAS  PubMed  Google Scholar 

  78. Fang BY, Wang CY, Li C, Wang HB, Zhao YD. Amplified using DNase I and aptamer/graphene oxide for sensing prostate specific antigen in human serum. Sensor Actuat B-Chem. 2017;244:928–33.

    Article  CAS  Google Scholar 

  79. Hao TT, Wu XL, Xu LG, Liu LQ, Ma W, Kuang H, et al. Ultrasensitive detection of prostate-specific antigen and thrombin based on Gold-Upconversion nanoparticle assembled pyramids. Small. 2017;13(19).

  80. Das P, Krull UJ (2017) Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. Analyst 142.

  81. Deng YL, Xu DD, Pang DW, Tang HW. Target-triggered signal turn-on detection of prostate specific antigen based on metal-enhanced fluorescence of Ag@SiO2@SiO2-RuBpy composite nanoparticles. Nanotechnology. 2017;28(6):065501.

    Article  PubMed  CAS  Google Scholar 

  82. Kim GI, Kim KW, Oh MK, Sung YM. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology. 2009;20(17):175503.

    Article  PubMed  CAS  Google Scholar 

  83. Li H, Sun DE, Liu YJ, Liu ZH. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron. 2014;55:149–56.

    Article  CAS  PubMed  Google Scholar 

  84. Park L, Kim J, Lee JH. Role of background observed in aptasensor with chemiluminescence detection. Talanta. 2013;116:736–42.

    Article  CAS  PubMed  Google Scholar 

  85. Pasquardini L, Pancheri L, Potrich C, Ferri A, Piemonte C, Lunelli L, et al. SPAD aptasensor for the detection of circulating protein biomarkers. Biosens Bioelectron. 2015;68:500–7.

    Article  CAS  PubMed  Google Scholar 

  86. Bi S, Luo BY, Ye JY, Wang ZH. Label-free chemiluminescent aptasensor for platelet-derived growth factor detection based on exonuclease-assisted cascade autocatalytic recycling amplification. Biosens Bioelectron. 2014;62:208–13.

    Article  CAS  PubMed  Google Scholar 

  87. Wang P, Song YH, Zhao YJ, Fan AP. Hydroxylamine amplified gold nanoparticle-based aptameric system for the highly selective and sensitive detection of platelet-derived growth factor. Talanta. 2013;103:392–7.

    Article  CAS  PubMed  Google Scholar 

  88. Yao LY, Yu XQ, Zhao YJ, Fan AP. An aptamer-based chemiluminescence method for ultrasensitive detection of platelet-derived growth factor by cascade amplification combining rolling circle amplification with hydroxylamine-enlarged gold nanoparticles. Anal Methods-Uk. 2015;7(20):8786–92.

    Article  CAS  Google Scholar 

  89. Zhang XF, Zhang H, Xu SX, Sun YH. A highly sensitive LED-induced chemiluminescence platform for aptasensing of platelet-derived growth factor. Analyst. 2014;139(1):133–7.

    Article  CAS  PubMed  Google Scholar 

  90. Lee JH, Rho JER, Rho THD, Newby JG. Advent of innovative chemiluminescent enzyme immunoassay. Biosens Bioelectron. 2010;26(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  91. Choi HK, Lee JH. Role of magnetic Fe3O4 graphene oxide in chemiluminescent aptasensors capable of sensing tumor markers in human serum. Anal Methods-Uk. 2013;5(24):6964–8.

    Article  CAS  Google Scholar 

  92. Khang H, Cho K, Chong S, Lee JH. All-in-one dual-aptasensor capable of rapidly quantifying carcinoembryonic antigen. Biosens Bioelectron. 2017;90:46–52.

    Article  CAS  PubMed  Google Scholar 

  93. Shi GF, Cao JT, Zhang JJ, Huang KJ, Liu YM, Chen YH, et al. Aptasensor based on tripetalous cadmium sulfide-graphene electrochemiluminescence for the detection of carcinoembryonic antigen. Analyst. 2014;139(22):5827–34.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang H, Li M, Li C, Guo Z, Dong H, Wu P, et al. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification. Biosens Bioelectron. 2015;74:98–103.

    Article  CAS  PubMed  Google Scholar 

  95. Cao JT, Yang JJ, Zhao LZ, Wang YL, Wang H, Liu YM, et al. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosens Bioelectron. 2018;99:92–8.

    Article  CAS  PubMed  Google Scholar 

  96. Wu MS, Liu Z, Shi HW, Chen HY, Xu JJ. Visual Electrochemiluminescence detection of Cancer biomarkers on a closed bipolar electrode Array Chip. Anal Chem. 2015;87(1):530–7.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu D, Zhou X, Xing D. A new kind of aptamer-based immunomagnetic electrochemiluminescence assay for quantitative detection of protein. Biosens Bioelectron. 2010;26(1):285–8.

    Article  CAS  PubMed  Google Scholar 

  98. Chen M, Bi S, Jia X, He P. Aptamer-conjugated bio-bar-code au-Fe3O4 nanoparticles as amplification station for electrochemiluminescence detection of tumor cells. Anal Chim Acta. 2014;837:44–51.

    Article  CAS  PubMed  Google Scholar 

  99. Ma W, Yin H, Xu L, Wu X, Kuang H, Wang L, et al. Ultrasensitive aptamer-based SERS detection of PSAs by heterogeneous satellite nanoassemblies. Chem Commun (Camb). 2014;50(68):9737–40.

    Article  CAS  Google Scholar 

  100. Yang K, Hu Y, Dong N, Zhu G, Zhu T, Jiang N. A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens Bioelectron. 2017;94:286–91.

    Article  CAS  PubMed  Google Scholar 

  101. Xu C, Wu X, Fu P, Ma W, Xu L, Kuang H. SERS-active silver nanoparticle Trimers for sub-Attomolar detection of alpha fetoprotein. RSC Adv. 2015;5(90):73395–8.

    Article  CAS  Google Scholar 

  102. Zheng J, Hu Y, Bai J, Ma C, Li J, Li Y, et al. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes. Anal Chem. 2014;86(4):2205–12.

    Article  CAS  PubMed  Google Scholar 

  103. Yarbakht M, Nikkhah M, Moshaii A, Weber K, Matthäus C, Cialla-May D, et al. Simultaneous isolation and detection of single breast cancer cells using surface- enhanced Raman spectroscopy. Talanta. 2018;186:44–52.

    Article  CAS  PubMed  Google Scholar 

  104. Chen ZG, Lei YL, Chen X, Wang Z, Liu JB. An aptamer based resonance light scattering assay of prostate specific antigen. Biosens Bioelectron. 2012;36(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  105. Luo YH, Zhang XH, Yao DM, Wen GQ, Liu QY, Liang AH, et al. Resonance Rayleigh scattering detection of trace PDGF based on catalysis of an aptamer-modified nanogold probe in the Fehling reaction. RSC Adv. 2014;4(53):28052–5.

    Article  CAS  Google Scholar 

  106. Gong P, Shi B, Zheng M, Wang B, Zhang P, Hu D, et al. PEI protected aptamer molecular probes for contrast-enhanced in vivo cancer imaging. Biomaterials. 2012;33(31):7810–7.

    Article  CAS  PubMed  Google Scholar 

  107. Pu Y, Liu ZX, Lu Y, Yuan P, Liu J, Yu B, et al. Using DNA Aptamer probe for Immunostaining of Cancer frozen tissues. Anal Chem. 2015;87(3):1919–24.

    Article  CAS  PubMed  Google Scholar 

  108. Li J, Dai Y, Wang S, Han C, Xu K. Aptamer-tagged green- and yellow-emitting fluorescent silver nanoclusters for specific tumor cell imaging. Sensors & Actuators B Chemical. 2016;232:1–8.

    Article  CAS  Google Scholar 

  109. Ai J, Li T, Li BL, Xu YH, Li D, Liu ZJ, et al. In situ labeling and imaging of cellular protein via a bi-functional anticancer aptamer and its fluorescent ligand. Anal Chim Acta. 2012;741:93–9.

    Article  CAS  PubMed  Google Scholar 

  110. Xiao H, Chen YQ, Yuan EF, Li W, Jiang ZR, Wei L, et al. Obtaining more accurate signals: spatiotemporal imaging of Cancer sites enabled by a Photoactivatable Aptamer-based strategy. Acs Appl Mater Inter. 2016;8(36):23542–8.

    Article  CAS  Google Scholar 

  111. Bagalkot V, Zhang L, Levynissenbaum E, Jon S, Robert Langer A. Quantum dot−Aptamer conjugates for synchronous Cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70.

    Article  CAS  PubMed  Google Scholar 

  112. Zeng ZH, Parekh P, Li Z, Shi ZZ, Tung CH, Zu YL. Specific and sensitive tumor imaging using biostable oligonucleotide Aptamer probes. Theranostics. 2014;4(9):945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen HY, Zhao J, Zhang M, Yang HB, Ma YX, Gu YQ. MUC1 Aptamer-based near-infrared fluorescence probes for tumor imaging. Mol Imaging Biol. 2015;17(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  114. Pascual L, Cerqueira-Coutinho C, Garcia-Fernandez A, de Luis B, Bernardes ES, Albernaz MS, et al. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomed-Nanotechnol. 2017;13(8):2495–505.

    Article  CAS  Google Scholar 

  115. Da Pieve C, Perkins AC, Missailidis S. Anti-MUC1 aptamers: radiolabelling with Tc-99m and biodistribution in MCF-7 tumour-bearing mice. Nucl Med Biol. 2009;36(6):703–10.

    Article  PubMed  CAS  Google Scholar 

  116. Borbas KE, Ferreira CSM, Perkins A, Bruce JI, Missailidis S. Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug Chem. 2007;18(4):1205–12.

    Article  CAS  PubMed  Google Scholar 

  117. Da Pieve C, Iley JN, Perkins A, Missailidis S. Development of anti-MUC1 DNA aptamers for the imaging and radiotherapy of breast cancer. Breast Cancer Res. 2008;10:S31–2.

    Article  Google Scholar 

  118. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, et al. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloid Surface B. 2016;143:224–32.

    Article  CAS  Google Scholar 

  119. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate Cancer therapy using Aptamer-functionalized thermally cross-linked Superparamagnetic Iron oxide nanoparticles. Small. 2011;7(15):2241–9.

    Article  CAS  PubMed  Google Scholar 

  120. Kang WJ, Lee J, Lee YS, Cho S, Ali BA, Al-Khedhairy AA, et al. Multimodal imaging probe for targeting cancer cells using uMUC-1 aptamer. Colloid Surface B. 2015;136:134–40.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (grant nos. 8150140715, 81503463, 81801792), the Natural Science Foundation of Jiangsu Province of China (grant no. BK20170389), and the Science and Technology Program of Suzhou (SS201867).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenyu Jiang or Limin Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, X., Zhang, X., Shao, X. et al. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal Bioanal Chem 412, 6691–6705 (2020). https://doi.org/10.1007/s00216-020-02774-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02774-7

Keywords

Navigation