Skip to main content
Log in

An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An optical biosensor module for soil contamination assessment is presented, employing bioluminescent bacterial bioreporters encapsulated in poly-dopamine (PD)-coated alginate microbeads. The PD-coated beads displayed improved mechanical strength and stability, but somewhat delayed responses to the inducing toxicant. Using toluene as a model soil contaminant, two bioluminescent reporter strains were employed for its detection in the ambient light-blocking, temperature-controlled biosensor module. Bioluminescence of strain TV1061 (harboring an inducible grpE::luxCDABE fusion) increased and that of strain GC2 (harboring a constitutive lac::luxCDABE fusion) decreased in the presence of increasing toluene concentrations. In the former case, a maximal effect was observed in the presence of 1% toluene. This simple optical detection biosensor module may potentially be utilized for monitoring soil contamination from areas suspected of chemical pollution such petrochemical industrial zones or petrol stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schematic 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PCBs:

Polychlorinated biphenyls

BTEX:

Benzene, toluene, ethylbenzene, and xylene

GC:

Gas chromatography

GFP:

Green fluorescent protein

FMNH2 :

Reduced flavin mononucleotide

FMN:

Flavin mononucleotide

PD:

Poly-dopamine

LB:

Lysogeny broth

OD:

Optical density

BL:

Bioluminescence

RBL:

Relative bioluminescence

References

  1. Ji K, Kim J, Lee M, Park S, Kwon HJ, Cheong HK, et al. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong. Korea Environ Pollut. 2013;178:322–8.

    Article  CAS  PubMed  Google Scholar 

  2. Wu YZ, Chen J, Ji JF, Tian QJ, Wu XM. Feasibility of reflectance spectroscopy for the assessment of soil mercury contamination. Environ Sci Technol. 2005;39(3):873–8.

    Article  CAS  PubMed  Google Scholar 

  3. Fallah M, Shabanpor M, Zakerinia M, Ebrahimi S. Risk assessment of gas oil and kerosene contamination on some properties of silty clay soil. Environ Monit Assess. 2015;187(7).

  4. Liang YT, Li GH, Van Nostrand JD, He ZL, Wu LY, Deng Y, et al. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiol Ecol. 2009;70(2):324–33.

    Article  CAS  PubMed  Google Scholar 

  5. Hilpert M, Breysse PN. Infiltration and evaporation of small hydrocarbon spills at gas stations. J Contam Hydrol. 2014;170:39–52.

    Article  CAS  PubMed  Google Scholar 

  6. Dawson JJC, Iroegbu CO, Maciel H, Paton GI. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol. 2008;104(1):141–51.

    CAS  PubMed  Google Scholar 

  7. Durmusoglu E, Taspinar F, Karademir A. Health risk assessment of BTEX emissions in the landfill environment. J Hazard Mater. 2010;176(1–3):870–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ezquerro O, Ortiz G, Pons B, Tena MT. Determination of benzene, toluene, ethylbenzene and xylenes in soils by multiple headspace solid-phase microextraction. J Chromatogr A. 2004;1035(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  9. Burlage RS, Sayler GS, Larimer F. Monitoring of naphthalene catabolism by bioluminescence with Nah-Lux transcriptional fusions. J Bacteriol. 1990;172(9):4749–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gu MB, Gil GC, Kim JH. A two-stage minibioreactor system for continuous toxicity monitoring. Biosens Bioelectron. 1999;14(4):355–61.

    Article  CAS  PubMed  Google Scholar 

  11. Luo JP, Liu XH, Tian Q, Yue WW, Zeng J, Chen GQ, et al. Disposable bioluminescence-based biosensor for detection of bacterial count in food. Anal Biochem. 2009;394(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell RJ, Gu MB. Construction and evaluation of nagR-nagAa :: lux fusion strains in biosensing for salicylic acid derivatives. Appl Biochem Biotechnol. 2005;120(3):183–97.

    Article  CAS  PubMed  Google Scholar 

  13. Niazi JH, Kim BC, Ahn JM, Gu MB. A novel bioluminescent bacterial biosensor using the highly specific oxidative stress-inducible pgi gene. Biosens Bioelectron. 2008;24(4):670–5.

    Article  CAS  PubMed  Google Scholar 

  14. Karttunen J, Shastri N. Measurement of ligand-induced activation in single viable T-cells using the Lacz reporter gene. Proc Natl Acad Sci U S A. 1991;88(9):3972–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol. 2000;182(14):4068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu MB, Mitchell RJ, Kim BC. Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol. 2004;87:269–305.

    CAS  PubMed  Google Scholar 

  17. Tu SC, Mager HIX. Biochemistry of bacterial bioluminescence. Photochem Photobiol. 1995;62(4):615–24.

    Article  CAS  PubMed  Google Scholar 

  18. Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB. A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron. 2005;21(3):500–7.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JH, Gu MB. An integrated mini biosensor system for continuous water toxicity monitoring. Biosens Bioelectron. 2005;20(9):1744–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gil GC, Mitchell RJ, Chang ST, Gu MB. A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron. 2000;15(1–2):23–30.

    CAS  PubMed  Google Scholar 

  21. Elad T, Seo HB, Belkin S, Gu MB. High-throughput prescreening of pharmaceuticals using a genome-wide bacterial bioreporter array. Biosens Bioelectron. 2015;68:699–704.

    Article  CAS  PubMed  Google Scholar 

  22. Gu MB, Min J, Kim EJ. Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere. 2002;46(2):289–94.

    Article  CAS  PubMed  Google Scholar 

  23. Jung I, Bin Seo H, Lee JE, Kim BC, Gu MB. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Analyst. 2014;139(18):4696–701.

    Article  CAS  PubMed  Google Scholar 

  24. Ahn JM, Kim JH, Kim JH, Gu MB. Randomly distributed arrays of optically coded functional microbeads for toxicity screening and monitoring. Lab Chip. 2010;10(20):2695–701.

    Article  CAS  PubMed  Google Scholar 

  25. Coiffier A, Coradin T, Roux C, Bouvet OMM, Livage J. Sol-gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes. J Mater Chem. 2001;11(8):2039–44.

    Article  CAS  Google Scholar 

  26. Dainty AL, Goulding KH, Robinson PK, Simpkins I, Trevan MD. Stability of alginate-immobilized algal cells. Biotechnol Bioeng. 1986;28(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  27. Coradin T, Mercey E, Lisnard L, Livage J. Design of silica-coated microcapsules for bioencapsulation. Chem Commun. 2001;23:2496–7.

    Article  CAS  Google Scholar 

  28. Vandyk TK, Reed TR, Vollmer AC, Larossa RA. Synergistic induction of the heat-shock response in Escherichia-coli by simultaneous treatment with chemical inducers. J Bacteriol. 1995;177(20):6001–4.

    Article  CAS  Google Scholar 

  29. Marincs F, White DWR. Immobilization of Escherichia-coli expressing the lux genes of Xenorhabdus-luminescens. Appl Environ Microbiol. 1994;60(10):3862–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hassan HM, Fridovich I. Paraquat and Escherichia-coli - mechanism of production of extracellular superoxide radical. J Biol Chem. 1979;254(21):846–52.

    Google Scholar 

  31. Li YL, Liu ML, Xiang CH, Xie QJ, Yao SZ. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films. 2006;497(1–2):270–8.

    Article  CAS  Google Scholar 

  32. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang XW, Spencer HG. Calcium alginate gels: formation and stability in the presence of an inert electrolyte. Polymer. 1998;39(13):2759–64.

    Article  CAS  Google Scholar 

  34. Kim BC, Youn CH, Ahn JM, Gu MB. Screening of target-specific stress-responsive genes for the development of cell-based biosensors using a DNA microarray. Anal Chem. 2005;77(24):8020–6.

    Article  CAS  PubMed  Google Scholar 

  35. Kim BJ, Park T, Moon HC, Park SY, Hong D, Ko EH, et al. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation. Angew Chem Int Ed. 2014;53(52):14443–6.

    Article  CAS  Google Scholar 

  36. Belkin S, Yagur-Kroll S, Kabessa Y, Korouma V, Septon T, Anati Y, et al. Remote detection of buried landmines using a bacterial sensor. Nat Biotechnol. 2017;35(4):308–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Core Technology Development Program for the Oceans and the Polar Regions of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2015M1A5A1037055). Man Bock Gu thanks both Hebrew University of Jerusalem in Israel (HUJI) and Alexander von Humboldt (AvH) Foundation in Germany for visiting research in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Advances in Direct Optical Detection with guest editors Antje J. Baeumner, Günter Gauglitz, and Jiri Homola.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(PDF 407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J.W., Seo, H.B., Belkin, S. et al. An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Anal Bioanal Chem 412, 3373–3381 (2020). https://doi.org/10.1007/s00216-020-02469-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02469-z

Keywords

Navigation