Skip to main content
Log in

Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A selective cortisol sensor based on molecularly imprinted poly(glycidylmethacrylate-co ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) has been demonstrated for detection of cortisol in human sweat. The non-enzymatic biomimetric flexible sweat sensor was fabricated inexpensively by layer by layer (LbL) assembly. The sensor layers comprised a stretchable polydimethylsiloxane (PDMS) base with carbon nanotubes-cellulose nanocrystals (CNC/CNT) conductive nanoporous nanofilms. The imprinted (MIP) poly(GMA-co-EGDMA) deposited on the CNC/CNT was the cortisol biomimetric receptor. Rapid in analyte response (3 min), the cortisol MIP sensor demonstrated excellent performance. The sensor has a limit of detection (LOD) of 2.0 ng/mL ± 0.4 ng/mL, dynamic range of 10–66 ng/mL, and a sensor reproducibility of 2.6% relative standard deviation (RSD). The MIP sensor also had high cortisol specificity and was inherently blind to selected interfering species including glucose, epinephrine, β-estradiol, and methoxyprogestrone. The MIP was four orders of magnitude more sensitive than its non-imprinted (NIP) counterpart. The MIP sensor remains stable over time, responding proportionately to doses of cortisol in human sweat.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kassal P, Steinberg MD, Steinberg IM. Wireless chemical sensors and biosensors. A review. Sens. Actuat B: Chemical. 2018;266:228–45. https://doi.org/10.1016/j.snb.2018.03.074.

    Article  CAS  Google Scholar 

  2. Bandodkar AJ, Wang J. Wearable chemical sensors: present challenges and future prospects. ACS. Sens. 2017;1:464–82. https://doi.org/10.1021/acssensors.6b00250.

    Article  CAS  Google Scholar 

  3. Roy S, Moshe DP, Hanaein Y. Carbon nanotube-based ion selective sensors for wearable applications. ACS Appl Mater Interfaces. 2017;9:35169–77. https://doi.org/10.1021/acsami.7b07346.

    Article  CAS  PubMed  Google Scholar 

  4. Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv. 2018;4:eaar3921. https://doi.org/10.1126/sciadv.aar3921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jalal AH, Alam F, Roychoudhury S, Umasankar Y, Pala N. Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 2018;3:1246–63. https://doi.org/10.1021/acssensors.8b00400.

    Article  CAS  PubMed  Google Scholar 

  6. Kim SJ, Choi SJ, Cho HJ, Kim ID. Innovative nanosensor for disease diagnosis. Acc Chem Res. 2017;50:1587–96. https://doi.org/10.1021/acs.accounts.7b00047.

    Article  CAS  PubMed  Google Scholar 

  7. Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 2014;32:363–71. https://doi.org/10.1016/j.tibtech.2014.04.005.

    Article  CAS  PubMed  Google Scholar 

  8. Nyein HYY, Tai LC, Ngo TQP, Chao M, Zhang GB. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 2018;3:944–52. https://doi.org/10.1021/acssensors.7b00961.

    Article  CAS  PubMed  Google Scholar 

  9. Oh SY, Hong SY, Jeong YR, Yun J, Park H. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl Mater Interfaces. 2018;10:13729–40. https://doi.org/10.1021/acsami.8b03342.

    Article  CAS  PubMed  Google Scholar 

  10. Padmanathan N, Shao H, Razeeb KM. Multifunctional nickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors. ACS Appl Mater Interfaces. 2018;10:8599–610. https://doi.org/10.1021/acsami.7b17187.

    Article  CAS  PubMed  Google Scholar 

  11. Mitsubayashi K, Suzuki M, Tamiya E, Karube I. Analysis of metabolites in sweat as a measure of physical condition. Anal Chem Actica. 1994;289:27–34. https://doi.org/10.1016/0003-2670(94)80004-9.

    Article  CAS  Google Scholar 

  12. Anastasova S, Crewther B, Bembnowicz P, Curto V, Ip H. A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron. 2017;93:139–45. https://doi.org/10.1016/j.bios.2016.09.038.

    Article  CAS  PubMed  Google Scholar 

  13. Tuteja SK, Ormsby C, Neethiraja S. Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano Micro Lett. 2018;10:41. https://doi.org/10.1007/s40820-018-0193-5.

    Article  CAS  Google Scholar 

  14. Jia M, Chew WM, Feinstein Y, Sheath P, Sternberg EM. Quantification of cortisol in human eccrine sweat by liquid chromatography – tandem mass spectrometry. Analyst. 2016;141:2053–60. https://doi.org/10.1039/C5AN02387D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin JA, Chavez JL, Chushak Y, Chapleau RR, Hagen J. Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol. Anal Bioanal Chem. 2014;406:4637–47. https://doi.org/10.1007/s00216-014-7883-8.

    Article  CAS  PubMed  Google Scholar 

  16. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62:593–602. https://doi.org/10.1001/archpsyc.62.6.593.

    Article  PubMed  Google Scholar 

  17. Ramstrom O, Ye L, Mosback K. Artificial antibodies to corticosteroids prepared by molecular imprinting. Chem Biodivers. 1996;3:471–7. https://doi.org/10.1016/S1074-5521(96)90095-2.

    Article  CAS  Google Scholar 

  18. Zhang Q, Mugo SM. Nano-sized structured platforms for facile solid-phase nanoextraction for molecular capture and (Bio) chemical analysis. Nanomat Design Sens Appl Elsevier. 2019:111–30. https://doi.org/10.1016/B978-0-12-814505-0.00005-9.

    Chapter  Google Scholar 

  19. Parlak O, Keene ST, Marais A, Curto VF, Salleo A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018;4:eaar2904. https://doi.org/10.1126/sciadv.aar2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cooke J, Hebret D, Kelly JA. Sweet nanochemistry: a fast, reliable alternative synthesis of yellow colloidal silver nanoparticles using benign reagents. J Chem Educ. 2015;92:345–9. https://doi.org/10.1021/ed5004756.

    Article  CAS  Google Scholar 

  21. Dhanjai, Yu N, Mugo SM. A flexible-imprinted capacitive sensor for rapid detection of adrenaline. Talanta. 2019;204:602–6. https://doi.org/10.1016/j.talanta.2019.06.016.

    Article  CAS  PubMed  Google Scholar 

  22. Wu W, Mitra N, Yan ECY, Zhou S. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano. 2010;4:4831–9. https://doi.org/10.1021/nn1008319.

    Article  CAS  PubMed  Google Scholar 

  23. Alzaid M, Roth J, Wang Y, Almutairi E, Brown SL. Enhancing the elasticity of ultrathin single-wall carbon nanotube films with colloidal nanocrystal. Langmuir. 2017;33:7889–95. https://doi.org/10.1021/acs.langmuir.7b01988.

    Article  CAS  PubMed  Google Scholar 

  24. Plawsky JL, Kim JK, Schubert EF. Engineered nanoporous and nanostructured films. Mater Today. 2009;12:36–45. https://doi.org/10.1016/S1369-7021(09)70179-8.

    Article  CAS  Google Scholar 

  25. Nemoto J, Saito T, Isogai A. Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces. 2015;7:19809–15. https://doi.org/10.1021/acsami.5b05841.

    Article  CAS  PubMed  Google Scholar 

  26. Zaryanov NV, Nikitina VN, Karpova EV, Karyakina EE, Karyakin AA. Nonenzymatic sensor for lactate detection in human sweat. Anal Chem. 2017;89:11198–202. https://doi.org/10.1021/acs.analchem.7b03662.

    Article  CAS  PubMed  Google Scholar 

  27. Sekar M, Pandiaraj M, Bhansali S, Ponpandian N, Viswanathan C. Carbon fiber based electrochemical sensor for sweat cortisol measurement. Sci Rep. 2019;9:403. https://doi.org/10.1038/s41598-018-37243-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun B, Gou Y, Ma Y, Zheng X, Bai R. Investigate electrochemical immunosensor of cortisol based on gold nanoparticles/magnetic functionalized reduced graphene oxide. Biosens Bioelectron. 2017;88:55–62. https://doi.org/10.1016/j.bios.2016.07.047.

    Article  CAS  PubMed  Google Scholar 

  29. Kim KS, Lim SR, Kim SE, Lee JY, Chung CH. Highly sensitive and selective electrochemical cortisol sensor using bifunctional protein interlayer-modified graphene electrodes. Sens Actuators B Chem. 2017;242:1121–8. https://doi.org/10.1016/j.snb.2016.09.135.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mugo research group acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Summer Jobs Program and MacEwan University. We also acknowledge the assistance of Lisa Mugo (St. Mary’s Elementary, Edmonton) in designing the graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel M. Mugo.

Ethics declarations

Informed consent was obtained from the student volunteer participant included in the study. The study was approved by the MacEwan Research Ethics Board (REB) to ascertain the study was performed in accordance with acceptable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugo, S.M., Alberkant, J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal Bioanal Chem 412, 1825–1833 (2020). https://doi.org/10.1007/s00216-020-02430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02430-0

Keywords

Navigation