Skip to main content

Advertisement

Log in

A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A three-dimensional microfluidic chip that combines sample manipulation and SERS detection on-chip was developed. This was successfully achieved by chip integration of a nanoporous polycarbonate track-etched (PCTE) membrane which connects microfluidic channels on two different levels with each other. The membrane fulfills two functions at the same time. On the one hand, it enables sample enrichment by selective electrokinetic transport processes through the membrane. On the other hand, the silver nanoparticle–coated backside of the same membrane enables SERS detection of the enriched analytes. The SERS substrate performance and the electrokinetic transport phenomena were studied using Rhodamine B (RhB) by Raman microscopy and fluorescence video microscopy. After system validation, the approach was attested by on-chip processing of a complex food sample. In a proof-of-concept study, the microfluidic device with the SERS substrate membrane was used to detect a concentration of 1 ppm melamine (705 cm−1) in whole milk. Electrokinetic transport across the nanoporous SERS substrate facilitates the extraction of analyte molecules from a sample channel into a detection channel via a potential gradient, thus easily removing obscuring compounds present in the sample matrix. The SERS signal of the analyte could be significantly increased by on-target sample drying. This was achieved by guiding an additional gas flow over the membrane which further extends the microfluidic functionality of the chip device. The proposed method possesses the advantages of combining a rapid (within 15 min) sample clean-up using electrokinetic transport in a three-dimensional microfluidic device which is highly suitable for sensitive and selective SERS detection of chemical and biological analytes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36:485–96. https://doi.org/10.1002/jrs.1362.

    Article  CAS  Google Scholar 

  2. Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26:163–6. https://doi.org/10.1016/0009-2614(74)85388-1.

    Article  CAS  Google Scholar 

  3. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78:1667–70. https://doi.org/10.1103/PhysRevLett.78.1667.

    Article  CAS  Google Scholar 

  4. Giovannozzi AM, Rolle F, Sega M, Abete MC, Marchis D, Rossi AM. Rapid and sensitive detection of melamine in milk with gold nanoparticles by surface enhanced Raman scattering. Food Chem. 2014;159:250–6. https://doi.org/10.1016/j.foodchem.2014.03.013.

    Article  CAS  PubMed  Google Scholar 

  5. Premasiri WR, Clarke RH, Londhe S, Womble ME. Determination of cyanide in waste water by low-resolution surface enhanced Raman spectroscopy on sol-gel substrates. J Raman Spectrosc. 2001;32:919–22. https://doi.org/10.1002/jrs.762.

    Article  CAS  Google Scholar 

  6. Cheng IF, Chang HC, Chen TY, Hu C, Yang FL. Rapid (<5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced raman spectroscopy. Sci Rep. 2013;3:2365. https://doi.org/10.1038/srep02365.

    Article  Google Scholar 

  7. Li X, Feng S, Hu Y, Sheng W, Zhang Y, Yuan S, et al. Rapid detection of melamine in milk using immunological separation and surface Enhanced raman spectroscopy. J Food Sci. 2015;80:C1196–201. https://doi.org/10.1111/1750-3841.12876.

    Article  CAS  PubMed  Google Scholar 

  8. Li R, Yang J, Han J, Liu J, Huang M. Quantitative determination of melamine in milk using Ag nanoparticle monolayer film as SERS substrate. Phys E Low-Dimens Syst Nanostruct. 2017;88:164–8. https://doi.org/10.1016/j.physe.2016.12.013.

    Article  CAS  Google Scholar 

  9. Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett. 2006;6:2630–6. https://doi.org/10.1021/nl061666f.

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, Choo J. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis. 2008;29:1815–28. https://doi.org/10.1002/elps.200700554.

    Article  CAS  PubMed  Google Scholar 

  11. White IM, Yazdi SH, Yu WW. Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis. Microfluid Nanofluid. 2012;13:205–16. https://doi.org/10.1007/s10404-012-0962-2.

    Article  CAS  Google Scholar 

  12. Jahn IJ, Žukovskaja O, Zheng X-S, Weber K, Bocklitz TW, Cialla-May D, et al. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst. 2017;142:1022–47. https://doi.org/10.1039/C7AN00118E.

    Article  CAS  PubMed  Google Scholar 

  13. Tycova A, Gerhardt RF, Belder D. Surface enhanced Raman spectroscopy in microchip electrophoresis. J Chromatogr A. 2018;1541:39–46. https://doi.org/10.1016/j.chroma.2018.02.014.

    Article  CAS  PubMed  Google Scholar 

  14. Deng Y-L, Juang Y-J. Electrokinetic trapping and surface enhanced Raman scattering detection of biomolecules using optofluidic device integrated with a microneedles array. Biomicrofluidics. 2013;7:014111. https://doi.org/10.1063/1.4793224.

    Article  CAS  PubMed Central  Google Scholar 

  15. Kohlheyer D, Eijkel JCT, Schlautmann S, van den Berg A, Schasfoort RBM. Microfluidic high-resolution free-flow isoelectric focusing. Anal Chem. 2007;79:8190–8. https://doi.org/10.1021/ac071419b.

    Article  CAS  PubMed  Google Scholar 

  16. Bottenus D, Jubery TZ, Ouyang Y, Dong W-J, Dutta P, Ivory CF. 10 000-fold concentration increase of the biomarker cardiac troponin I in a reducing union microfluidic chip using cationic isotachophoresis. Lab Chip. 2011;11:890. https://doi.org/10.1039/c04lc00490a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huh YS, Chung AJ, Cordovez B, Erickson D. Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip. 2009;9:433–9. https://doi.org/10.1039/B809702J.

    Article  CAS  PubMed  Google Scholar 

  18. Li D, Duan H, Wang Y, Zhang Q, Cao H, Deng W, et al. On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Microchim Acta. 2018;185:10. https://doi.org/10.1007/s00604-017-2580-x.

    Article  CAS  Google Scholar 

  19. Li D, Li DW, Fossey JS, Long YT. Portable surface-enhanced raman scattering sensor for rapid detection of aniline and phenol derivatives by on-site electrostatic preconcentration. Anal Chem. 2010;82:9299–305. https://doi.org/10.1021/ac101812x.

    Article  CAS  PubMed  Google Scholar 

  20. Park M, Oh Y-J, Park S-G, Yang S-B, Jeong K-H. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface enhanced Raman scattering. Small. 2015;11:2487–92. https://doi.org/10.1002/smll.201402942.

    Article  CAS  PubMed  Google Scholar 

  21. Kuo TC, Cannon DM, Shannon MA, Bohn PW, Sweedler JV. Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sensors Actuators A Phys. 2003;102:223–33. https://doi.org/10.1016/S0924-4247(02)00394-1.

    Article  CAS  Google Scholar 

  22. Flachsbart BR, Wong K, Iannacone JM, Abante EN, Vlach RL, Rauchfuss PA, et al. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip. 2006;6:667. https://doi.org/10.1039/b514300d.

    Article  CAS  PubMed  Google Scholar 

  23. Aran K, Fok A, Sasso LA, Kamdar N, Guan Y, Sun Q, et al. Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab Chip. 2011;11:2858. https://doi.org/10.1039/c1lc20080a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du W-B, Fang Q, He Q-H, Fang Z-L. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows. Anal Chem. 2005;77:1330–7. https://doi.org/10.1021/ac048675y.

    Article  CAS  PubMed  Google Scholar 

  25. Nge PN, Yang W, Pagaduan JV, Woolley AT. Ion-permeable membrane for on-chip preconcentration and separation of cancer marker proteins. Electrophoresis. 2011;32:1133–40. https://doi.org/10.1002/elps.201000698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuo T-C, Cannon DM, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, et al. Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem. 2003;75:1861–7.

    Article  CAS  Google Scholar 

  27. Li F, Guijt RM, Breadmore MC. Nanoporous membranes for microfluidic concentration prior to electrophoretic separation of proteins in urine. Anal Chem. 2016;88:8257–63. https://doi.org/10.1021/acs.analchem.6b02096.

    Article  CAS  PubMed  Google Scholar 

  28. Rajapandiyan P, Yang J. Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases. Anal Chem. 2012;84:10277–82. https://doi.org/10.1021/ac302175q.

    Article  CAS  PubMed  Google Scholar 

  29. Yu WW, White IM. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst. 2012;137:1168. https://doi.org/10.1039/c2an15947c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao S, Pearson B, He L. Mapping bacteria on filter membranes, an innovative SERS approach. J Microbiol Methods. 2018;147:69–75. https://doi.org/10.1016/j.mimet.2018.03.005.

    Article  CAS  PubMed  Google Scholar 

  31. Lin M, He L, Awika J, Yang L, Ledoux DR, Li H, et al. Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J Food Sci. 2008;73:T129–34. https://doi.org/10.1111/j.1750-3841.2008.00901.x.

    Article  CAS  PubMed  Google Scholar 

  32. Tyan Y-C, Yang M-H, Jong S-B, Wang C-K, Shiea J. Melamine contamination. Anal Bioanal Chem. 2009;395:729–35. https://doi.org/10.1007/s00216-009-3009-0.

    Article  CAS  PubMed  Google Scholar 

  33. Kim A, Barcelo SJ, Williams RS, Li Z. Melamine sensing in milk products by using surface enhanced Raman scattering. Anal Chem. 2012;84:9303–9. https://doi.org/10.1021/ac302025q.

    Article  CAS  PubMed  Google Scholar 

  34. US Food and Drug Administration (FDA) (2008) Interim safety and risk assessment of melamine and its analogues in food for humans. In: Fed. Regist. https://www.federalregister.gov/documents/2008/11/13/E8-26869/interim-safety-and-risk-assessment-of-melamine-and-its-analogues-in-food-for-humans-availability. Accessed 23 Sep 2019

  35. World Health Organization (2008) Melamine and cyanuric acid: toxicity, preliminary risk assessment and guidance on levels in food. 7

  36. Cheng J, Wang S, Su X-O. Detection of melamine in feed using liquid-liquid extraction treatment combined with surface-enhanced Raman scattering spectroscopy. PLoS One. 2014;9:e107770. https://doi.org/10.1371/journal.pone.0107770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mircescu NE, Oltean M, Chiş V, Leopold N. FTIR, FT-Raman, SERS and DFT study on melamine. Vib Spectrosc. 2012;62:165–71. https://doi.org/10.1016/j.vibspec.2012.04.008.

    Article  CAS  Google Scholar 

  38. Jang YH, Hwang S, Chang SB, Ku J, Chung DS. Acid dissociation constants of melamine derivatives from density functional theory calculations. J Phys Chem A. 2009;113:13036–40. https://doi.org/10.1021/jp9053583.

    Article  CAS  PubMed  Google Scholar 

  39. Leopold N, Stefancu A, Herman K, Tódor IS, Iancu SD, Moisoiu V, et al. The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement. Beilstein J Nanotechnol. 2018;9:2236–47. https://doi.org/10.3762/bjnano.9.208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chong NS, Smith KA, Setti S, Ooi BG. Application of gold and silver colloidal nanoparticles for the surface-enhanced Raman spectrometric analysis of melamine and 4-aminobiphenyl. Int J Environ Technol Manag. 2013;16:3. https://doi.org/10.1504/IJETM.2013.050681.

    Article  CAS  Google Scholar 

  41. Kong Y, Wei C, Wang Z, Hou Z, Li H, Yu J, et al. Determination of melamine in quail egg and milk with capillary zone electrophoresis. Am J Anal Chem. 2014;05:258–65. https://doi.org/10.4236/ajac.2014.54032.

    Article  CAS  Google Scholar 

  42. Yazgan NN, Boyacı İH, Topcu A, Tamer U. Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles. Anal Bioanal Chem. 2012;403:2009–17. https://doi.org/10.1007/s00216-012-5971-1.

    Article  CAS  PubMed  Google Scholar 

  43. Wang R, Xu Y, Wang R, Wang C, Zhao H, Zheng X, et al. A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine. Microchim Acta. 2017;184:279–87. https://doi.org/10.1007/s00604-016-1990-5.

    Article  CAS  Google Scholar 

  44. Han C, Li Y, Jia Q, Bradley LH, Gan Y, Yao Y, et al. On-demand fabrication of surface-enhanced Raman scattering arrays by pen writing, and their application to the determination of melamine in milk. Microchim Acta. 2017;184:2909–17. https://doi.org/10.1007/s00604-017-2307-z.

    Article  CAS  Google Scholar 

  45. Nieuwoudt MK, Martin JW, Oosterbeek RN, Novikova NI, Wang X, Malmström J, et al. Gold-sputtered Blu-ray discs: simple and inexpensive SERS substrates for sensitive detection of melamine. Anal Bioanal Chem. 2016;408:4403–11. https://doi.org/10.1007/s00216-016-9545-5.

    Article  CAS  PubMed  Google Scholar 

  46. Lou T, Wang Y, Li J, Peng H, Xiong H, Chen L. Rapid detection of melamine with 4-mercaptopyridine-modified gold nanoparticles by surface-enhanced Raman scattering. Anal Bioanal Chem. 2011;401:333–8. https://doi.org/10.1007/s00216-011-5067-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dipl.-Phys. Jörg Lenzner (Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig) for recording the SEM images and Monika Hahn (Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig) for sputtering the silver thin film on the PCTE membranes. The authors also wish to thank Dr. Josef Heiland and Raphael Urban (Institut für analytische Chemie, Universität Leipzig) for support with the graphical design.

Funding

Financial support from the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Belder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krafft, B., Panneerselvam, R., Geissler, D. et al. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes. Anal Bioanal Chem 412, 267–277 (2020). https://doi.org/10.1007/s00216-019-02228-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02228-9

Keywords

Navigation