Skip to main content
Log in

Oligonucleotides and pesticide regulated peroxidase catalytic activity of hemin for colorimetric detection of isocarbophos in vegetables by naked eyes

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel colorimetric sensing platform based on the peroxidase activity of hemin regulated by oligonucleotide and pesticide was reported for the ultrasensitive and selective detection of isocarbophos. Oligonucleotides can accumulate on the surface of hemin in acid condition and temporarily inhibit its catalytic activity, which results in the loss of one electron of TMB molecule and produce the blue products. With the addition of isocarbophos, the pesticide molecules can interact with oligonucleotides to form some complexes, which relieve the inhibition of ssDNA to hemin and further enhance its catalytic activity. Thus, the TMB molecules are further oxidized to lose another electron and produce the yellow product in a few minutes, which has the characteristic absorption peak at 450 nm. The color change of the sensing system is related to the amount of isocarbophos, so this method can quickly discriminate whether the target pesticide exceeds the maximal residue limit just by naked eyes. To improve the performance of sensing platform, some important parameters like buffer condition and ssDNA have been investigated, and the peroxidase activity of hemin was further studied to verify the catalytic mechanism. The proposed sensing platform has a detection limit as low as 0.6 μg/L and displays good selectivity against other competitive pesticides. Moreover, the developed sensing platform also exhibits favorable accuracy and stability, indicating that it has potential applications in the detection of pesticide residues in agricultural products.

A novel colorimetric sensing platform based on oligonucleotides and pesticide regulation; the peroxidase catalytic activity of hemin was firstly reported for the ultrasensitive and selective detection of isocarbophos pesticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo XS, Zhang XY, Cai Q, Shen T, Zhu SM. Developing a novel sensitive visual screening card for rapid detection of pesticide residues in food. Food Control. 2013;30(1):15–23. https://doi.org/10.1016/j.foodcont.2012.07.015.

    Article  CAS  Google Scholar 

  2. Sharma D, Nagpal A, Pakade YB, Katnoria JK. Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: a review. Talanta. 2010;82(4):1077–89. https://doi.org/10.1016/j.talanta.2010.06.043.

    Article  CAS  PubMed  Google Scholar 

  3. Afzal MBS, Shad SA, Abbas N, Ayyaz M, Walker WB. Cross-resistance, the stability of acetamiprid resistance and its effect on the biological parameters of cotton mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae), in Pakistan. Pest Manag Sci. 2015;71(1):151–8. https://doi.org/10.1002/ps.3783.

    Article  CAS  PubMed  Google Scholar 

  4. Vale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. Handb Clin Neurol. 2015;131:149–68. https://doi.org/10.1016/b978-0-444-62627-1.00010-x.

    Article  PubMed  Google Scholar 

  5. Hmoudo H, Ben Salem C, Bouraoui K. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371(9631):2169–70. https://doi.org/10.1016/s0140-6736(08)60946-0.

    Article  Google Scholar 

  6. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol. 2013;268(2):157–77. https://doi.org/10.1016/j.taap.2013.01.025.

    Article  CAS  PubMed  Google Scholar 

  7. Hassani S, Momtaz S, Vakhshiteh F, Maghsoudi AS, Ganjali MR, Norouzi P, et al. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch Toxicol. 2017;91(1):109–30. https://doi.org/10.1007/s00204-016-1875-8.

    Article  CAS  PubMed  Google Scholar 

  8. Wang XL, Tang QH, Wang QQ, Qiao XG, Xu ZX. Study of a molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for simultaneous determination of trace trichlorfon and monocrotophos residues in vegetables. J Sci Food Agric. 2014;94(7):1409–15. https://doi.org/10.1002/jsfa.6429.

    Article  CAS  PubMed  Google Scholar 

  9. Wu LJ, Song Y, Hu MZ, Zhang HQ, Yu AM, Yu C, et al. Application of magnetic solvent bar liquid-phase microextraction for determination of organophosphorus pesticides in fruit juice samples by gas chromatography mass spectrometry. Food Chem. 2015;176:197–204. https://doi.org/10.1016/j.foodchem.2014.12.055.

    Article  CAS  PubMed  Google Scholar 

  10. Garrido Frenich A, Gonzalez-Rodriguez MJ, Arrebola FJ, Martinez Vidal JL. Potentiality of gas chromatography-triple quadrupole mass spectrometry in vanguard and rearguard methods of pesticide residues in vegetables. Anal Chem. 2005;77(14):4640–8.

    Article  PubMed  Google Scholar 

  11. Xu ZX, Fang GZ, Wang S. Molecularly imprinted solid phase extraction coupled to high-performance liquid chromatography for determination of trace dichlorvos residues in vegetables. Food Chem. 2010;119(2):845–50. https://doi.org/10.1016/j.foodchem.2009.08.047.

    Article  CAS  Google Scholar 

  12. Chauhan N, Pundir CS. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Anal Chim Acta. 2011;701(1):66–74. https://doi.org/10.1016/j.aca.2011.06.014.

    Article  CAS  PubMed  Google Scholar 

  13. Miyazaki M, Kaneno J, Uehara M, Fujii M, Shimizu H, Maeda H (2003) Simple method for preparation of nanostructure on microchannel surface and its usage for enzyme-immobilization. Chem Commun (Cambridge, England) (5):648-649. doi:https://doi.org/10.1039/b212848a.

  14. Yang MM, Zhao YT, Wang LM, Paulsen M, Simpson CD, Liu FQ, et al. Simultaneous detection of dual biomarkers from humans exposed to organophosphorus pesticides by combination of immunochromatographic test strip and ellman assay. Biosens Bioelectron. 2018;104:39–44. https://doi.org/10.1016/j.bios.2017.12.029.

    Article  CAS  PubMed  Google Scholar 

  15. Rajangam B, Daniel DK, Krastanov AI. Progress in enzyme inhibition based detection of pesticides. Eng Life Sci. 2018;18(1):4–19. https://doi.org/10.1002/elsc.201700028.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang WY, Asiri AM, Liu DL, Du D, Lin YH. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trac-Trends Anal Chem. 2014;54:1–10. https://doi.org/10.1016/j.trac.2013.10.007.

    Article  CAS  Google Scholar 

  17. Songa EA, Okonkwo JO. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta. 2016;155:289–304. https://doi.org/10.1016/j.talanta.2016.04.046.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao FC, Tian Y, Wang HM, Liu JY, Han X, Yang ZY. Development of a biotinylated broad-specificity single-chain variable fragment antibody and a sensitive immunoassay for detection of organophosphorus pesticides. Anal Bioanal Chem. 2016;408(23):6423–30. https://doi.org/10.1007/s00216-016-9760-0.

    Article  CAS  PubMed  Google Scholar 

  19. Genfa Z, Dasgupta PK. Hematin as a peroxidase substitute in hydrogen peroxide determinations. Anal Chem. 1992;64(5):517–22.

    Article  CAS  PubMed  Google Scholar 

  20. Wu YG, Wang FZ, Zhan SS, Liu L, Luo YF, Zhou P. Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(III). RSC Adv. 2013;3(48):25614–9. https://doi.org/10.1039/c3ra44346a.

    Article  CAS  Google Scholar 

  21. Golub E, Freeman R, Willner I. Hemin/G-quadruplex-catalyzed aerobic oxidation of thiols to disulfides: application of the process for the development of sensors and aptasensors and for probing acetylcholine esterase activity. Anal Chem. 2013;85(24):12126–33. https://doi.org/10.1021/ac403305k.

    Article  CAS  PubMed  Google Scholar 

  22. Wei C, Han G, Jia G, Zhou J, Li C. Study on the interaction of porphyrin with G-quadruplex DNAs. Biophys Chem. 2008;137(1):19–23. https://doi.org/10.1016/j.bpc.2008.06.006.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Q, Chen J, Gao CJ, Zhang ML, Chen JY, Qiu HD. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst. 2015;140(8):2857–63. https://doi.org/10.1039/c5an00031a.

    Article  CAS  PubMed  Google Scholar 

  24. Guo YJ, Li J, Dong SJ. Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose. Sens Actuator B-Chem. 2011;160(1):295–300. https://doi.org/10.1016/j.snb.2011.07.050.

    Article  CAS  Google Scholar 

  25. Kong DM, Wang N, Guo XX, Shen HX. ‘Turn-on’ detection of Hg2+ ion using a peroxidase-like split G-quadruplex-hemin DNAzyme. Analyst. 2010;135(3):545–9. https://doi.org/10.1039/b924014d.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou XH, Kong DM, Shen HX. Ag+ and cysteine quantitation based on G-quadruplex-hemin DNAzymes disruption by Ag+. Anal Chem. 2010;82(3):789–93. https://doi.org/10.1021/ac902421u.

    Article  CAS  PubMed  Google Scholar 

  27. Miao YB, Gan N, Ren HX, Li TH, Cao YT, Hu FT, et al. Switch-on fluorescence scheme for antibiotics based on a magnetic composite probe with aptamer and hemin/G-quadruplex coimmobilized nano-Pt-luminol as signal tracer. Talanta. 2016;147:296–301. https://doi.org/10.1016/j.talanta.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  28. Luan Q, Xiong X, Gan N, Cao YT, Wu DZ, Dong YR, et al. A multiple signal amplified colorimetric aptasensor for antibiotics measurement using DNAzyme labeled Fe-MIL-88-Pt as novel peroxidase mimic tags and CSDP target-triggered cycles. Talanta. 2018;187:27–34. https://doi.org/10.1016/j.talanta.2018.04.072.

    Article  CAS  PubMed  Google Scholar 

  29. Song YG, Shan BX, Feng BW, Xu PF, Zeng Q, Su D. A novel biosensor based on ball-flower-like Cu-hemin MOF grown on elastic carbon foam for trichlorfon detection. RSC Adv. 2018;8(47):27008–15. https://doi.org/10.1039/c8ra04596h.

    Article  CAS  Google Scholar 

  30. Yang ZT, Qian J, Yang XW, Jiang D, Du XJ, Wang K, et al. A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens Bioelectron. 2015;65:39–46. https://doi.org/10.1016/j.bios.2014.10.004.

    Article  CAS  PubMed  Google Scholar 

  31. Liu T, Zhang X, Hao JP, Zhu WX, Liu W, Zhang DH, et al. Acetylcholinesterase-free colorimetric detection of chlorpyrifos in fruit juice based on the oxidation reaction of H2O2 with chlorpyrifos and ABTS(2-) catalyzed by hemin/G-quadruplex DNAzyme. Food Anal Meth. 2015;8(6):1556–64. https://doi.org/10.1007/s12161-014-0042-1.

    Article  Google Scholar 

  32. Cheng XH, Liu XJ, Bing T, Cao ZH, Shangguan DH. General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochemistry. 2009;48(33):7817–23. https://doi.org/10.1021/bi9006786.

    Article  CAS  PubMed  Google Scholar 

  33. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83. https://doi.org/10.1038/nnano.2007.260.

    Article  CAS  PubMed  Google Scholar 

  34. Wu YG, Zhan SS, Xu LR, Shi WW, Xi T, Zhan XJ, et al. A simple and label-free sensor for mercury(II) detection in aqueous solution by malachite green based on a resonance scattering spectral assay. Chem Commun. 2011;47(21):6027–9. https://doi.org/10.1039/c1cc10563a.

    Article  CAS  Google Scholar 

  35. Wu YG, Zhan SS, Wang FZ, He L, Zhi WT, Zhou P. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution. Chem Commun. 2012;48(37):4459–61. https://doi.org/10.1039/c2cc30384a.

    Article  CAS  Google Scholar 

  36. Zheng QQ, Yu YH, Fan K, Ji F, Wu J, Ying YB. A nano-silver enzyme electrode for organophosphorus pesticide detection. Anal Bioanal Chem. 2016;408(21):5819–27. https://doi.org/10.1007/s00216-016-9694-6.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang QQ, Xu QC, Guo YM, Sun X, Wang XY. Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides. RSC Adv. 2016;6(29):24698–703. https://doi.org/10.1039/c5ra21799g.

    Article  CAS  Google Scholar 

  38. Liu YL, Zhou QX, Li J, Lei M, Yan XY. Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sens Actuator B-Chem. 2016;237:597–604. https://doi.org/10.1016/j.snb.2016.06.092.

    Article  CAS  Google Scholar 

  39. Guo JJ, Li Y, Wang LK, Xu JY, Huang YJ, Luo YL, et al. Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Anal Bioanal Chem. 2016;408(2):557–66. https://doi.org/10.1007/s00216-015-9132-1.

    Article  CAS  PubMed  Google Scholar 

  40. Fu JY, An XS, Yao Y, Guo YM, Sun X. Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sens Actuator B-Chem. 2019;287:503–9. https://doi.org/10.1016/j.snb.2019.02.057.

    Article  CAS  Google Scholar 

  41. Shi QW, Teng YJ, Zhang YC, Liu WH. Rapid detection of organophosphorus pesticide residue on Prussian blue modified dual-channel screen-printed electrodes combing with portable potentiostat. Chin Chem Lett. 2018;29(9):1379–82. https://doi.org/10.1016/j.cclet.2017.11.023.

    Article  CAS  Google Scholar 

  42. Yan XN, Deng J, Xu JS, Li H, Wang LL, Chen D, et al. A novel electrochemical sensor for isocarbophos based on a glassy carbon electrode modified with electropolymerized molecularly imprinted terpolymer. Sens Actuator B-Chem. 2012;171:1087–94. https://doi.org/10.1016/j.snb.2012.06.038.

    Article  CAS  Google Scholar 

  43. Zhang CZ, Wang L, Tu Z, Sun X, He QH, Lei ZJ, et al. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosens Bioelectron. 2014;55:216–9. https://doi.org/10.1016/j.bios.2013.12.020.

    Article  CAS  PubMed  Google Scholar 

  44. Li X, Jiang X, Liu QY, Liang AH, Jiang ZL. Using N-doped carbon dots prepared rapidly by microwave digestion as nanoprobes and nanocatalysts for fluorescence determination of ultratrace isocarbophos with label-free aptamers. Nanomaterials. 2019;9(2):14. https://doi.org/10.3390/nano9020223.

    Article  CAS  Google Scholar 

  45. Hu YF, Chen ZM, Lai FY, Li JF. Biomass-codoped carbon dots: efficient fluorescent probes for isocarbophos ultrasensitive detection and for living cells dual-color imaging. J Mater Sci. 2019;54(11):8627–39. https://doi.org/10.1007/s10853-019-03494-9.

    Article  CAS  Google Scholar 

  46. Wang LM, Cai J, Wang YL, Fang QK, Wang SY, Cheng Q, et al. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta. 2014;181(13–14):1565–72. https://doi.org/10.1007/s00604-014-1247-0.

    Article  CAS  Google Scholar 

  47. Bai WH, Zhu C, Liu JC, Yan MM, Yang SM, Chen AL. Gold nanoparticle-based colorimetric aptasensor for rapid detection of six organophosphorous pesticides. Environ Toxicol Chem. 2015;34(10):2244–9. https://doi.org/10.1002/etc.3088.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (31760486, 21565009); the Natural Science Foundation of Guizhou Province ([2016]1403); the Science and Technology Support Program of Guizhou Province for Social Development ([2018]2795); the Science and Technology Program of Guizhou Province for Talent Team Building ([2018]5781, [2017]5788); the Construction Program of Biology First-class Discipline in Guizhou (GNYL[2017]009); the Foundation of Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation (2018JJ002), China National Light Industry; and the Foundation of Key Laboratory of Urban Agriculture (UA201701), Ministry of Agriculture, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuangen Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Chen, H., Zhou, P. et al. Oligonucleotides and pesticide regulated peroxidase catalytic activity of hemin for colorimetric detection of isocarbophos in vegetables by naked eyes. Anal Bioanal Chem 411, 7857–7868 (2019). https://doi.org/10.1007/s00216-019-02185-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02185-3

Keywords

Navigation