Skip to main content
Log in

A novel anodic electrochemiluminescence behavior of sulfur-doped carbon nitride nanosheets in the presence of nitrogen-doped carbon dots and its application for detecting folic acid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The application of carbon dots as a coreactant for Ru(bpy)32+ (where bpy is 2,2′-bipyridine) electrochemiluminescence (ECL) has been widely studied. However, the high cost of Ru(bpy)32+ and its derivatives has prohibited its widespread use in ECL biosensors. Herein, a novel anodic ECL system based on sulfur-doped graphitic carbon nitride nanosheets (S-g-C3N4 NSs) and nitrogen-doped carbon dots (N-CDs) is presented. In this ECL system, N-CDs serve as a new ECL coreactant that can significantly enhance the anodic ECL signal of S-g-C3N4 NSs (approximately 83 times) under optimal conditions. The possible ECL response mechanism of the S-g-C3N4 NSs/N-CDs system is proposed in detail on the basis of cyclic voltammograms, ECL–time curves, and ECL spectra. Furthermore, the ECL signal of the S-g-C3N4 NSs/N-CDs system was quenched by folic acid (FA), which was chosen as a model analyte to study the potential application of the new ECL system. The ECL intensity decreased linearly with the concentration of FA in the range from 0.05 to 200 μM. The detection limit for FA measurement is 16 nM (signal-to-noise ratio of 3). The proposed new ECL system has many advantages over traditional approaches, such as low toxicity and excellent biocompatibility. Especially, the proposed approach can detect FA in diluted human serum samples with satisfactory recoveries, indicating promising application for bioanalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    CAS  PubMed  Google Scholar 

  2. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    CAS  PubMed  Google Scholar 

  3. Tan X, Zhang B, Zhou J, Zou G. Spectrum-based electrochemiluminescence immunoassay for selectively determining CA125 in greenish waveband. ChemElectroChem. 2017;4(7):1714–8.

    CAS  Google Scholar 

  4. Wei Y, Wang Y, Wang J, Yang X, Qi H, Gao Q, et al. Homogeneous electrogenerated chemiluminescence immunoassay for the detection of biomarkers by magnetic preconcentration on a magnetic electrode. Anal Bioanal Chem. 2019;411(18):4203–11. https://doi.org/10.1007/s00216-019-01830-1.

    CAS  PubMed  Google Scholar 

  5. Yuan J, Wang E. Effects of divalent metal ions on electrochemiluminescence sensor with Ru(bpy)3 2+ immobilized in Eastman-AQ membrane. Electroanalysis. 2008;20(9):949–54.

    CAS  Google Scholar 

  6. Jiang D, Du X, Liu Q, Zhou L, Qian J, Wang K. One-step thermal-treatment route to fabricate well-dispersed ZnO nanocrystals on nitrogen-doped graphene for enhanced electrochemiluminescence and ultrasensitive detection of pentachlorophenol. ACS Appl Mater Interfaces. 2015;7(5):3093–100.

    CAS  PubMed  Google Scholar 

  7. Li L, Chen Y, Zhu JJ. Recent advances in electrochemiluminescence analysis. Anal Chem. 2017;89(1):358–71.

    CAS  PubMed  Google Scholar 

  8. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science. 2002;296(5571):1293–7.

    CAS  PubMed  Google Scholar 

  9. Yu Y, Lu C, Zhang M. Gold nanoclusters@Ru(bpy)3 2+-layered double hydroxide ultrathin film as a cathodic electrochemiluminescence resonance energy transfer probe. Anal Chem. 2015;87(15):8026–32.

    CAS  PubMed  Google Scholar 

  10. Zhang L, Shang L, Dong S. Sensitive and selective determination of Cu2+ by electrochemiluminescence of CdTe quantum dots. Electrochem Commun. 2008;10(10):1452–4.

    CAS  Google Scholar 

  11. Jie G, Huang H, Sun X, Zhu J-J. Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens Bioelectron. 2008;23(12):1896–9.

    CAS  PubMed  Google Scholar 

  12. Hesari M, Swanick KN, Lu JS, Whyte R, Wang S, Ding Z. Highly efficient dual-color electrochemiluminescence from BODIPY-capped PbS nanocrystals. J Am Chem Soc. 2015;137(35):11266–9.

    CAS  PubMed  Google Scholar 

  13. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc. 2013;135(1):18–21.

    CAS  PubMed  Google Scholar 

  14. Cheng C, Huang Y, Tian X, Zheng B, Li Y, Yuan H, et al. Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem. 2012;84(11):4754–9.

    CAS  PubMed  Google Scholar 

  15. Xiong M, Rong Q, Meng HM, Zhang XB. Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens Bioelectron. 2017;89(15):212–23.

    CAS  PubMed  Google Scholar 

  16. Zhu R, Zhang Y, Fang X, Cui X, Wang J, Yue C, et al. In situ sulfur-doped graphitic carbon nitride nanosheets with enhanced electrogenerated chemiluminescence used for sensitive and selective sensing of L-cysteine. J Mater Chem B. 2019;7(14):2320–9.

    CAS  Google Scholar 

  17. Hai Z, Li J, Wu J, Xu J, Liang G. Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence. J Am Chem Soc. 2017;139(3):1041–4.

    CAS  PubMed  Google Scholar 

  18. Zhai Q, Li J, Wang E. Recent advances based on nanomaterials as electrochemiluminescence probes for the fabrication of sensors. ChemElectroChem. 2017;4(7):1639–50.

    CAS  Google Scholar 

  19. Chen H, Li W, Zhao P, Nie Z, Yao S. A CdTe/CdS quantum dots amplified graphene quantum dots anodic electrochemiluminescence platform and the application for ascorbic acid detection in fruits. Electrochim Acta. 2015;178:407–13.

    CAS  Google Scholar 

  20. Liu X, Shi L, Niu W, Li H, Xu G. Environmentally friendly and highly sensitive ruthenium(II) tris(2,2'-bipyridyl) electrochemiluminescent system using 2-(Dibutylamino)ethanol as co-reactant. Angew Chem Int Ed. 2007;119(3):425–8.

    Google Scholar 

  21. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed. 2013;52(14):3953–7.

    CAS  Google Scholar 

  22. Liu Y, Zhou Q, Li J, Lei M, Yan X. Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sensors Actuators B Chem. 2016;237:597–604.

    CAS  Google Scholar 

  23. Liu Y, Zhou Q, Yuan Y, Wu Y. Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate. Carbon. 2017;115:550–60.

    CAS  Google Scholar 

  24. Jimenez-Ruiz A, Grueso E, Perez-Tejeda P, Muriel-Delgado F, Torres-Marquez C. Electrochemiluminescent (ECL) [Ru(bpy)3]2+/PAMAM dendrimer reactions: coreactant effect and 5-fluorouracil/dendrimer complex formation. Anal Bioanal Chem. 2016;408(25):7213–24.

    CAS  PubMed  Google Scholar 

  25. Long YM, Bao L, Zhao JY, Zhang ZL, Pang DW. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)3 2+. Anal Chem. 2014;86(15):7224–8.

    CAS  PubMed  Google Scholar 

  26. Li L, Yu B, Zhang X, You T. A novel electrochemiluminescence sensor based on Ru(bpy)3 2+/N-doped carbon nanodots system for the detection of bisphenol A. Anal Chim Acta. 2015;895:104–11.

    CAS  PubMed  Google Scholar 

  27. Li L, Liu D, Mao H, You T. Multifunctional solid-state electrochemiluminescence sensing platform based on poly(ethylenimine) capped N-doped carbon dots as novel co-reactant. Biosens Bioelectron. 2017;89(Pt 1:489–95.

    CAS  PubMed  Google Scholar 

  28. Qi B-P, Zhang X, Shang B-B, Xiang D, Qu W, Zhang S. A facile method to sensitively monitor chlorinated phenols based on Ru(bpy)3 2+ electrochemiluminescent system using graphene quantum dots as coreactants. Carbon. 2017;121:72–8.

    CAS  Google Scholar 

  29. Xing H, Zhai Q, Zhang X, Li J, Wang E. Boron nitride quantum dots as efficient coreactant for enhanced electrochemiluminescence of ruthenium(II) tris(2,2'-bipyridyl). Anal Chem. 2018;90(3):2141–7.

    CAS  PubMed  Google Scholar 

  30. Carrara S, Arcudi F, Prato M, De Cola L. Amine-rich nitrogen-doped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew Chem Int Ed. 2017;56(17):4757–61.

    CAS  Google Scholar 

  31. Li X, Tan X, Yan J, Hu Q, Wu J, Zhang H, et al. A sensitive electrochemiluminescence folic acid sensor based on a 3D graphene/CdSeTe/Ru(bpy)3 2+-doped silica nanocomposite modified electrode. Electrochim Acta. 2016;187:433–41.

    CAS  Google Scholar 

  32. Prasad BB, Tiwari MP, Madhuri R, Sharma PS. Development of a highly sensitive and selective hyphenated technique (molecularly imprinted micro-solid phase extraction fiber–molecularly imprinted polymer fiber sensor) for ultratrace analysis of folic acid. Anal Chim Acta. 2010;662(1):14–22.

    CAS  PubMed  Google Scholar 

  33. Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS. Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J Am Coll Cardiol. 1999;34(7):2002–6.

    CAS  PubMed  Google Scholar 

  34. Wei S, Zhao F, Xu Z, Zeng B. Voltammetric determination of folic acid with a multi-walled carbon nanotube-modified gold electrode. Microchim Acta. 2006;152(3):285–90.

    CAS  Google Scholar 

  35. Li X, Wu X, Zhang F, Zhao B, Li Y. Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta. 2019;195:372–80.

    CAS  PubMed  Google Scholar 

  36. Chekin F, Teodorescu F, Coffinier Y, Pan G-H, Barras A, Boukherroub R, et al. MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens Bioelectron. 2016;85:807–13.

    CAS  PubMed  Google Scholar 

  37. Xu Y, Liu J, Gao C, Wang E. Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem Commun. 2014;48:151–4.

    CAS  Google Scholar 

  38. Wang W, Lu YC, Huang H, Feng JJ, Chen JR, Wang AJ. Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst. 2014;139(7):1692–6.

    CAS  PubMed  Google Scholar 

  39. Wang L, Zhou HS. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem. 2014;86(18):8902–5.

    CAS  PubMed  Google Scholar 

  40. Xu Y, Niu X, Zhang H, Xu L, Zhao S, Chen H, et al. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor. J Agric Food Chem. 2015;63(6):1747–55.

    CAS  PubMed  Google Scholar 

  41. S. Barbosa M, M. B. Oliveira F, Meng X, Soavi F, Santato C, O. Orlandi M. Tungsten oxide ion gel-gated transistors: how structural and electrochemical properties affect the doping mechanism. J Mater Chem C. 2018;6(8):1980–7.

    Google Scholar 

  42. Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, et al. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale. 2014;6(3):1890–5.

    CAS  PubMed  Google Scholar 

  43. Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, et al. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk – natural proteins. J Mater Chem B. 2013;1(22):2868.

    CAS  Google Scholar 

  44. Zhang Y, Fang X, Zhao H, Li Z. A highly sensitive and selective detection of Cr(VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta. 2018;181:318–25.

    CAS  PubMed  Google Scholar 

  45. Li L-L, Ji J, Fei R, Wang C-Z, Lu Q, Zhang J-R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22(14):2971–9.

    CAS  Google Scholar 

  46. Cui R, Gu YP, Bao L, Zhao JY, Qi BP, Zhang ZL, et al. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal Chem. 2012;84(21):8932–5.

    CAS  PubMed  Google Scholar 

  47. Qian J, Quan F, Zhao F, Wu C, Wang Z, Zhou L. Aconitic acid derived carbon dots: Conjugated interaction for the detection of folic acid and fluorescence targeted imaging of folate receptor overexpressed cancer cells. Sensors Actuators B Chem. 2018;262:444–51.

    CAS  Google Scholar 

  48. Gudarzy F, Moghaddam AB, Mozaffari S, Ganjkhanlou Y, Kazemzad M, Zahed R, et al. A lanthanide nanoparticle-based luminescent probe for folic acid. Microchim Acta. 2013;180(13):1257–62.

    CAS  Google Scholar 

  49. Hemmateenejad B, Shakerizadeh-shirazi F, Samari F. BSA-modified gold nanoclusters for sensing of folic acid. Sensors Actuators B Chem. 2014;199:42–6.

    CAS  Google Scholar 

  50. Gao X, Yue H, Huang S, Lin X, Gao XPA, Wang B, et al. Synthesis of graphene/ZnO nanowire arrays/graphene foam and its application for determination of folic acid. J Electroanal Chem. 2018;808:189–94.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Key Program of the National Natural Science Foundation of China (grant nos. 21838010, 21676270, and 21890762), the National Natural Science Foundation of China–Key Projects of Shanxi Coal Based Low Carbon Joint Foundation (grant no. U1610222), the Chinese Academy of Sciences (grant no. 211211KYSB), and the National Key Research and Development Plan (grant no. 2016YFF0203700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhao or Zengxi Li.

Ethics declarations

The study was approved by the Health Center of the University of Chinese Academy of Sciences and was performed in accordance with ethical standards. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Zhang, Y., Wang, J. et al. A novel anodic electrochemiluminescence behavior of sulfur-doped carbon nitride nanosheets in the presence of nitrogen-doped carbon dots and its application for detecting folic acid. Anal Bioanal Chem 411, 7137–7146 (2019). https://doi.org/10.1007/s00216-019-02088-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02088-3

Keywords

Navigation