Skip to main content
Log in

Comprehensive analysis of tara tannins by reversed-phase and hydrophilic interaction chromatography coupled to ion mobility and high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reversed-phase liquid chromatography (RP-LC) and hydrophilic interaction chromatography (HILIC) methods hyphenated to diode array detection and ion mobility (IM) high-resolution mass spectrometry (HR-MS) were used for the analysis of gallic acid derivatives and gallotannins in a commercial tara extract. UV spectra combined with low and high-collision energy mass spectral data and known RP-LC elution orders allowed the identification of 45 isomeric gallic acid derivatives and gallotannins. The synergy between IM and UV data was found to provide a simple means to determine the number of depsidic bonds and thus to distinguish between positional isomers. IM also facilitated the assignment of individual isomeric species between HILIC and RP-LC separations. For the hydrolysable tannins present in tara, RP-LC provided superior resolution and specificity compared to HILIC. The results reported in this paper highlight the utility of IM in combination with optimised complementary chromatographic separations and HR-MS for the detailed qualitative analysis of hydrolysable tannins in complex mixtures of these compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haslam E, Haworth RD, Keen PC. Gallotannins. Part VII. Tara gallotannin. J Chem Soc. 1962:3814–8.

  2. Gross GG. From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds. Phytochemistry. 2008;69:3018–31. https://doi.org/10.1016/j.phytochem.2007.04.031.

    Article  CAS  PubMed  Google Scholar 

  3. Armitage R, Bayliss GS, Gramshaw JW, Haslam E, Haworth RD, Jones K, et al. Gallotannins. Part III.* The constitution of Chinese, Turkish, Sumach, and tara tannins. J Chem Soc Perkin Trans. 1961;2:1842–53.

    Google Scholar 

  4. Arapitsas P, Menichetti S, Vincieri FF, Romani A. Hydrolyzable tannins with the hexahydroxydiphenoyl unit and the m-depsidic link: HPLC-DAD-MS identification and model synthesis. J Agric Food Chem. 2007;55:48–55.

    Article  CAS  PubMed  Google Scholar 

  5. Martins D, Duarte L, Silva VFM, Crispim A, Beghini E, Crispim F. Study of vegetable extracts effect on wet-white leather. Leather Footwear J. 2018;18:213–8.

    Article  CAS  Google Scholar 

  6. Lagel MC, Pizzi A, Giovando S. Matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry of phenol-formaldehyde-chestnut tannin resins. J Renew Mater. 2014;2:207–19.

    Article  CAS  Google Scholar 

  7. Aouf C, Benyahya S, Esnouf A, Caillol S, Boutevin B, Fulcrand H. Tara tannins as phenolic precursors of thermosetting epoxy resins. Eur Polym J. 2014;55:186–98.

    Article  CAS  Google Scholar 

  8. Galvez JMG, Riedl B, Conner AH. Analytical studies on tara tannins. Holzforschung. 1997;51:235–43.

    Article  Google Scholar 

  9. Zhao B, Han W, Zhang W, Shi B. Corrosion inhibition performance of tannins for mild steel in hydrochloric acid solution. Res Chem Intermed. 2018;44:407–23.

    Article  CAS  Google Scholar 

  10. Merino SF, Caprari JJ, Torres LV, Ramos LF, Girola AH. Inhibitive action of tara tannin in rust converter formultaion. Anti-Corrosion Methods Mater. 2017;64:136–47.

    Article  Google Scholar 

  11. Aguilar-Galvez A, Noratto G, Chambi F, Debaste F, Campos D. Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds. Food Chem. 2014;156:301–4.

    Article  CAS  PubMed  Google Scholar 

  12. Tian F, Li B, Ji B, Zhang G, Luo Y. Identification and structure-activity relationship of gallotannins separated from Galla chinensis. LWT Food Sci Technol. 2009;42:1289–95. https://doi.org/10.1016/j.lwt.2009.03.004.

    Article  CAS  Google Scholar 

  13. Arapitsas P. Hydrolyzable tannin analysis in food. Food Chem. 2012;135:1708–17. https://doi.org/10.1016/j.foodchem.2012.05.096.

    Article  CAS  PubMed  Google Scholar 

  14. Mueller-Harvey A. Analysis of hydrolysable tannins. Anim Feed Sci Technol. 2001;91:3–20.

    Article  CAS  Google Scholar 

  15. Engels C, Knödler M, Zhao YY, Carle R, Gänzle MG, Schieber A. Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. J Agric Food Chem. 2009;57:7712–8. https://doi.org/10.1021/jf901621m.

    Article  CAS  PubMed  Google Scholar 

  16. Salminen JP, Ossipov V, Loponen J, Haukioja E, Pihlaja K. Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography-mass spectrometry. J Chromatogr A. 1999;864:283–91. https://doi.org/10.1016/S0021-9673(99)01036-5.

    Article  CAS  Google Scholar 

  17. Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, et al. Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol. 2003;41:1727–38. https://doi.org/10.1016/S0278-6915(03)00200-X.

    Article  CAS  PubMed  Google Scholar 

  18. Delahaye P, Verzele M. Analysis of gallic, digallic and trigallic acids in tannic acids by high-performance liquid chromatography. J Chromatogr. 1983;265:363–7.

    Article  CAS  Google Scholar 

  19. Beasley TH, Ziegler HW, Bell AD. Determination and characterization of gallotannin by high performance liquid chromatography. Anal Chem. 1991;49:238–43. https://doi.org/10.1002/bmc.1130050503.

    Article  Google Scholar 

  20. Clifford MN, Stoupi S, Kuhnert N. Profiling and characterization by LC-MS of the galloylquinic acids of green tea, tara tannin, and tannic acid. J Agric Food Chem. 2007;55:2797–807.

    Article  CAS  PubMed  Google Scholar 

  21. Clifford MN, Johnston KL, Knight S, Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem. 2003;51:2900–11.

    Article  CAS  PubMed  Google Scholar 

  22. Clifford MN, Knight S, Kuhnert N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J Agric Food Chem. 2005;53:3821–32.

    Article  CAS  PubMed  Google Scholar 

  23. Clifford MN. Coffee bean dicaffeoylquinic acids. Phytochemistry. 1986;25:1767–9.

    Article  CAS  Google Scholar 

  24. Clifford MN, Knight S, Birgul S, Kuhnert N. Characterization by LC-MSn of four new classes of chlorogenic acids in green coffee beans: dimethoxycinnamoylquinic acids, diferuloylquinic acids, caffeoyl-dimethoxycinnamoylquinic acids, and feruloyl-dimethoxycinnamoylquinic acids. J Agric Food Chem. 2006;54:1957–69.

    Article  CAS  PubMed  Google Scholar 

  25. Mane C, Sommerer N, Yalcin T, Cheynier V, Cole RB, Fulcrand H. Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein−tannin complexes assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Anal Chem. 2007;79:2239–48.

    Article  CAS  PubMed  Google Scholar 

  26. Pizzi A, Pasch H, Rode K, Giovando S. Polymer structure of commercial hydrolyzable tannins by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. J Appl Polym Sci. 2009;113:3847–59.

    Article  CAS  Google Scholar 

  27. Franceschi P, Vrhovsek U, Guella G. Ion mobility mass spectrometric investigation of ellagitannins and their non-covalent aggregates. Rapid Commun Mass Spectrom. 2011;25:827–33.

    Article  CAS  PubMed  Google Scholar 

  28. Venter P, Pasch H, de Villiers A. Comprehensive analysis of hydrolysable tannins by reversed phase and hydrophilic interaction chromatography coupled to ion mobility and high-resolution mass spectrometry. Anal Chim Acta. 2019; (submitted).

  29. Xie C, Yu K, Zhong D, Yuan T, Ye F, Jarrell JA, et al. Investigation of isomeric transformations of chlorogenic acid in buffers and biological matrixes by ultraperformance liquid chromatography coupled with hybrid quadrupole/ion mobility/orthogonal acceleration time-of-flight mass spectrometry. J Agric Food Chem. 2011;59:11078–87.

    Article  CAS  PubMed  Google Scholar 

  30. Kuhnert N, Yassin GH, Jaiswal R, Matei MF, Grün CH. Differentiation of prototropic ions in regioisomeric caffeoyl quinic acids by electrospray ion mobility mass spectrometry. Rapid Commun Mass Spectrom. 2015;29:675–80.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng X, Renslow RS, Makola MM, Webb IK, Deng L, Thomas DG, et al. Structural elucidation of cis/trans dicaffeoylquinic acid photoisomerization using ion mobility spectrometry-mass spectrometry. J Phys Chem Lett. 2017;8:1381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruotolo BT, Benesch JL, Sandercock AM, Hyung S, Robinson CV. Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc. 2008;3:1139–52.

    Article  CAS  PubMed  Google Scholar 

  33. Forsythe JG, Petrov AS, Walker CA, Allen SJ, Pellissier JS, Bush MF, et al. Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst. 2015;140:6853–61.

    Article  CAS  PubMed  Google Scholar 

  34. Donovan JL, Meyer AS, Waterhouse A. Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica) prune juice (Prunus domestica). J Agric Food Chem. 1998;46:1247–52.

    Article  CAS  Google Scholar 

  35. Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L). J Agric Food Chem. 2000;48:5512–6.

    Article  CAS  PubMed  Google Scholar 

  36. Fang N, Yu S, Prior RL. LC/MS/MS characterization of phenolic constituents in dried plums. J Agric Food Chem. 2002;50:3579–85.

    Article  CAS  PubMed  Google Scholar 

  37. Warnke S, Seo J, Boschmans J, Sobott F, Scrivens JH, Bleiholder C, et al. Protomers of benzocaine: solvent and permittivity dependence. J Am Chem Soc. 2015;137:4236–42. https://doi.org/10.1021/jacs.5b01338.

    Article  CAS  PubMed  Google Scholar 

  38. Gagliardi LG, Castells CB, Ràfols C, Rosés M, Bosch E. δ conversion parameter between pH scales (WSpH and SSPH) in acetonitrile/water mixtures at various compositions and temperatures. Anal Chem. 2007;79:3180–7. https://doi.org/10.1021/ac062372h.

    Article  CAS  PubMed  Google Scholar 

  39. Willemse CM, Stander MA, de Villiers A. Hydrophilic interaction chromatographic analysis of anthocyanins. J Chromatogr A. 2013;1319:127–40.

    Article  CAS  PubMed  Google Scholar 

  40. Bu X, Skrdla PJ, Dormer PG, Bereznitski Y. Separation of triphenyl atropisomers of a pharmaceutical compound on a novel mixed mode stationary phase: a case study involving dynamic chromatography, dynamic NMR and molecular modeling. J Chromatogr A. 2010;1217:7255–64.

    Article  CAS  PubMed  Google Scholar 

  41. Fedurcová A, Vančová M, Mydlová J, Lehotay J, Krupčík J, Armstrong DW. Interconversion of oxazepam enantiomers during HPLC separation. Determination of thermodynamic parameters. J Liq Chromatogr Relat Technol. 2006;29:2889–900.

    Article  CAS  Google Scholar 

  42. Verzele M, Delahaye P, van Dijck J. Digallic acid. Bull Soc Chim Belg. 1983;92:181–6. https://doi.org/10.1002/bscb.19830920212.

    Article  CAS  Google Scholar 

  43. Nierenstein M, Spiers CW, Hatcher PR. Gallotannin. XIII. The identity of digallic acid from gallotannins with synthetic meta-digallic acid. J Am Chem Soc. 1925;47:846–50.

    Article  CAS  Google Scholar 

  44. Jurd L. Plant polyphenols. I. The polyphenolic constituents of the pellicle of the walnut. J Am Chem Soc. 1956;78:3345–448. https://doi.org/10.1021/ja01595a050.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Prof. A. Pizzi for providing the tannin sample.

Funding

This study was financially supported by Sasol (SASOL Chair grant to HP, collaborative grant to AdV) and the National Research Foundation (NRF, grant 98897 to AdV, bursary to PV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André de Villiers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Close-Up of Current Developments in Ion Mobility Spectrometry with guest editor Gérard Hopfgartner.

Electronic supplementary material

ESM 1

(PDF 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venter, P., Pasch, H. & de Villiers, A. Comprehensive analysis of tara tannins by reversed-phase and hydrophilic interaction chromatography coupled to ion mobility and high-resolution mass spectrometry. Anal Bioanal Chem 411, 6329–6341 (2019). https://doi.org/10.1007/s00216-019-01931-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01931-x

Keywords

Navigation