Skip to main content

Advertisement

Log in

Cleavable hydrophobic derivatization strategy for enrichment and identification of phosphorylated lysine peptides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Because of structural flexibility and acid lability, the identification of phosphorylated lysine (pLys) peptides is a great challenge. We report here a cleavable hydrophobic derivatization (CHD) strategy for the enrichment and identification of pLys peptides. First, 2,5-dioxopyrrolidin-1-yl-3-(decyldisulfanyl)propanoate was synthesized to react with dephosphorylated lysine peptides, and then the derived peptides were captured by a C18 column, followed by cleavage of the hydrophobic chain, with the specific label left on the target peptides for further identification. By CHD, the enrichment of pLys peptides from interfering peptides (1:1000 mass ratio) was achieved. Furthermore, CHD was applied to screen the pLys targets from Escherichia coli lysates, and 39 pLys sites from 35 proteins were identified. Gene Ontology (GO) analysis showed that these proteins played vital roles in catabolism, metabolism, biogenesis, and biosynthetic processes. All these results demonstrate that CHD might pave the way for comprehensive profiling of the pLys proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murat S, Bigot M, Chapron J, Konig GM, Kostenis E, Battaglia G, et al. 5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at serine 843 promotes mGlu2 receptor-operated Gi/o signaling. Mol Psychiatry. 2018. https://doi.org/10.1038/s41380-018-0069-6.

  2. Fuhs SR, Hunter T. pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol. 2017;45:8–16. https://doi.org/10.1016/j.ceb.2016.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Besant P, Attwood P, Piggott M. Focus on phosphoarginine and phospholysine. Curr Protein Pept Sci. 2009;10(6):536–50. https://doi.org/10.2174/138920309789630598.

    Article  CAS  PubMed  Google Scholar 

  4. Riley NM, Coon JJ. Phosphoproteomics in the age of rapid and deep proteome profiling. Anal Chem. 2016;88(1):74–94. https://doi.org/10.1021/acs.analchem.5b04123.

    Article  CAS  PubMed  Google Scholar 

  5. Ciesa J, Fraczyk T, Rode W. Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol. 2011;58:137–47.

    Google Scholar 

  6. Zetterqvist Ö, Engström L. Isolation of N-ε-[32P]phosphoryl-lysine from rat-liver cell sap after incubation with [32P]adenosine triphosphate. Biochim Biophys Acta. 1967;141(3):523–32. https://doi.org/10.1016/0304-4165(67)90181-x.

    Article  CAS  PubMed  Google Scholar 

  7. Zetterqvist Ö. Further studies on acid-labile [32P]phosphate bound to high-molecular weight material from rat-liver cell sap after incubation with [32P]adenosine triphosphate. Biochim Biophys Acta. 1967;141(3):533–9. https://doi.org/10.1016/0304-4165(67)90182-1.

    Article  CAS  PubMed  Google Scholar 

  8. Wålinder O, Zetterqvist Ö, Engström L. Purification of a bovine liver protein rapidly phosphorylated by adenosine triphosphate. Isolation of 1-32P-phosphohistidine 3-32P-phosphohistidine and N-ε-32P-phospholysine from 32P-labeled protein. J Biol Chem. 1968;243(10):2793–8.

    PubMed  Google Scholar 

  9. Wålinder O. Identification of a phosphate-incorporating protein from bovine liver as nucleoside diphosphate kinase and isolation of 1-32P-phosphohistidine 3-32P-phosphohistidine and N-ε-32P-phospholysine from erythrocytic nucleoside diphosphate kinase incubated with adenosine triphosphate-32P. J Biol Chem. 1968;243(14):3947–52.

    PubMed  Google Scholar 

  10. Wei Y, Matthews HR. Identification of phosphohistidine in proteins and purification of protein-histidine kinases. Methods Enzymol. 1991;200:388–414. https://doi.org/10.1016/0076-6879(91)00156-Q.

    Article  CAS  PubMed  Google Scholar 

  11. Ohmori H, Kuba M, Kumon A. Two phosphatases for 6-phospholysine and 3-phosphohistidine from rat brain. J Biol Chem. 1993;268:7625–7.

    CAS  PubMed  Google Scholar 

  12. Hiraishi H, Yokoi F, Kumon A. 3-phosphohistidine and 6-phospholysine are substrates of a 56-kDa inorganic pyrophosphatase from bovine liver. Arch Biochem Biophys. 1998;349(2):381–7. https://doi.org/10.1006/abbi.1997.0480.

    Article  CAS  PubMed  Google Scholar 

  13. Hiraishi H, Yokoi F, Kumon A. Bovine liver phosphoamidase as a protein histidine/lysine phosphatase. J Biochem. 1999;126(2):368–74. https://doi.org/10.1093/oxfordjournals.jbchem.a022459.

    Article  CAS  PubMed  Google Scholar 

  14. Ek P, Ek B, Zetterqvist O. Phosphohistidine phosphatase 1 (PHPT1) also dephosphorylates phospholysine of chemically phosphorylated histone H1 and polylysine. Ups J Med Sci. 2015;120(1):20–7. https://doi.org/10.3109/03009734.2014.996720.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen CC, Smith DL, Bruegger BB, Halpern RM, Smith RA. Occurrence and distribution of acid-labile histone phosphates in regenerating rat liver. Biochem. 1974;13:3785–9. https://doi.org/10.1021/bi00715a026.

    Article  CAS  Google Scholar 

  16. Chen CC, Bruegger BB, Kern CW, Lin YC, Halpern RM, Smith RA. Phosphorylation of nuclear proteins in rat regenerating liver. Biochem. 1977;16(22):4852–5. https://doi.org/10.1021/bi00641a016.

    Article  CAS  Google Scholar 

  17. Bertran-Vicente J, Schümann M, Schmieder P, Krausea E, Hackenberger CPR. Direct access of site-specifically phosphorylated lysine peptides from solid-support. Org Biomol Chem. 2015;13:6839–43. https://doi.org/10.1039/C5OB00734H.

    Article  CAS  PubMed  Google Scholar 

  18. Bertran-Vicente J, Serwa RA, Schumann M, Schmieder P, Krause E, Hackenberger CP. Site-specifically phosphorylated lysine peptides. J Am Chem Soc. 2014;136(39):13622–8. https://doi.org/10.1021/ja507886s.

    Article  CAS  PubMed  Google Scholar 

  19. Bertran-Vicente J, Schumann M, Hackenberger CP, Krause E. Gas-phase rearrangement in lysine phosphorylated peptides during electron-transfer dissociation tandem mass spectrometry. Anal Chem. 2015;87(14):6990–4. https://doi.org/10.1021/acs.analchem.5b01389.

    Article  CAS  PubMed  Google Scholar 

  20. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc. 2009;4(4):484–94. https://doi.org/10.1038/nprot.2009.21.

    Article  CAS  PubMed  Google Scholar 

  21. Lin S, Garcia BA. Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol. 2012;512:3–28. https://doi.org/10.1016/B978-0-12-391940-3.00001-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huesgen PF, Lange PF, Rogers LD, Solis N, Eckhard U, Kleifeld O, et al. LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat Methods. 2015;12(1):55–8. https://doi.org/10.1038/nmeth.3177.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Key Research and Development Program of China (2017YFA0505003), the National Natural Science Foundation (91543201, 21505133, 21725506), the Chinese Academy of Sciences Key Project in Frontier Science (QYZDY-SSW-SLH017), and the Innovation Program of Dalian Institute of Chemical Physics, Chinese Academy of Sciences Key (DICP TMSR201601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection New Insights into Analytical Science in China with guest editors Lihua Zhang, Hua Cui, and Qiankun Zhuang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 679 kb)

ESM 2

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Li, Y., Gao, H. et al. Cleavable hydrophobic derivatization strategy for enrichment and identification of phosphorylated lysine peptides. Anal Bioanal Chem 411, 4159–4166 (2019). https://doi.org/10.1007/s00216-019-01770-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01770-w

Keywords

Navigation